Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
$0.07
Per DBU
IBM watsonx.data
Score 8.7 out of 10
N/A
Watsonx.data is presented as an open, hybrid and governed data store that makes it possible for enterprises to scale analytics and AI with a fit-for-purpose data store, built on an open lakehouse architecture, supported by querying, governance and open data formats to access and share data.
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
IBM watsonx.data is well suited for use cases were you have to combine various data sources to build a lakehouse. It provides a secure framework to gather data and provide access to it to build ML/AI models. It allows users to focus on prompts and business logic than spend time on data engineering.
Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
Visualization in MLFLOW experiment can be enhanced
Integration complexity with Security Tools while watsonx.Data is well-suited for native tools, but integration with third-party security tools requires custom connectors or manual ETL pipelines. which leads to an increase in setup time.
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.
in terms of graph generation and interaction it could improve their UI and UX
I can give it 10/10 due to its impact in data analysis management. This is the right software for driving business insights and enhancing effective decision making. The infrastructure has the formal tools for preparing data before using it to make critical decisions. The NLP has enhanced standard analysis of unstructured data from social media websites.
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
Pinecone and IBM watsonx.data (Milvus in our case) both work great as a full-managed cloud-based vector database. We selected IBM watsonx.data because it integrates well with watson.ai and is a little more beginner friendly than Pinecone, but I think both are great anyway.