The Dataiku platform unifies data work from analytics to Generative AI. It supports enterprise analytics with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Mathematica
Score 7.0 out of 10
N/A
Wolfram's flagship product Mathematica is a modern technical computing application featuring a flexible symbolic coding language and a wide array of graphing and data visualization capabilities.
$1,520
per year
Pricing
Dataiku
Wolfram Mathematica
Editions & Modules
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
Standard Cloud
$1,520
per year
Standard Desktop
$3,040
one-time fee
Standard Desktop & Cloud
$3,344
one-time fee
Mathematica Enterprise Edition
$8,150.00
one-time fee
Offerings
Pricing Offerings
Dataiku
Mathematica
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
Discounts available for students and educational institutions. The Network Edition reduce per-user license costs through shared deployment across any number of machines on a local-area network.
More Pricing Information
Community Pulse
Dataiku
Wolfram Mathematica
Features
Dataiku
Wolfram Mathematica
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Dataiku
8.6
5 Ratings
3% above category average
Wolfram Mathematica
-
Ratings
Connect to Multiple Data Sources
8.05 Ratings
00 Ratings
Extend Existing Data Sources
10.04 Ratings
00 Ratings
Automatic Data Format Detection
10.05 Ratings
00 Ratings
MDM Integration
6.52 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Dataiku
10.0
5 Ratings
18% above category average
Wolfram Mathematica
-
Ratings
Visualization
10.05 Ratings
00 Ratings
Interactive Data Analysis
10.05 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Dataiku
9.5
5 Ratings
16% above category average
Wolfram Mathematica
-
Ratings
Interactive Data Cleaning and Enrichment
9.05 Ratings
00 Ratings
Data Transformations
9.05 Ratings
00 Ratings
Data Encryption
10.04 Ratings
00 Ratings
Built-in Processors
10.04 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Dataiku
8.5
5 Ratings
1% above category average
Wolfram Mathematica
-
Ratings
Multiple Model Development Languages and Tools
8.05 Ratings
00 Ratings
Automated Machine Learning
8.05 Ratings
00 Ratings
Single platform for multiple model development
8.05 Ratings
00 Ratings
Self-Service Model Delivery
10.04 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Dataiku
8.0
5 Ratings
6% below category average
Wolfram Mathematica
-
Ratings
Flexible Model Publishing Options
8.05 Ratings
00 Ratings
Security, Governance, and Cost Controls
8.05 Ratings
00 Ratings
BI Standard Reporting
Comparison of BI Standard Reporting features of Product A and Product B
Dataiku
-
Ratings
Wolfram Mathematica
9.9
6 Ratings
20% above category average
Pixel Perfect reports
00 Ratings
9.84 Ratings
Customizable dashboards
00 Ratings
9.94 Ratings
Report Formatting Templates
00 Ratings
9.96 Ratings
Ad-hoc Reporting
Comparison of Ad-hoc Reporting features of Product A and Product B
Dataiku
-
Ratings
Wolfram Mathematica
9.9
9 Ratings
24% above category average
Drill-down analysis
00 Ratings
9.98 Ratings
Formatting capabilities
00 Ratings
9.98 Ratings
Integration with R or other statistical packages
00 Ratings
9.97 Ratings
Report sharing and collaboration
00 Ratings
9.99 Ratings
Report Output and Scheduling
Comparison of Report Output and Scheduling features of Product A and Product B
Dataiku
-
Ratings
Wolfram Mathematica
9.3
8 Ratings
13% above category average
Publish to Web
00 Ratings
9.97 Ratings
Publish to PDF
00 Ratings
9.08 Ratings
Report Versioning
00 Ratings
9.97 Ratings
Report Delivery Scheduling
00 Ratings
8.95 Ratings
Delivery to Remote Servers
00 Ratings
8.95 Ratings
Data Discovery and Visualization
Comparison of Data Discovery and Visualization features of Product A and Product B
Dataiku is an awesome tool for data scientists. It really makes our lives easier. It is also really good for non technical users to see and follow along with the process. I do think that people can fall into the trap of using it without any knowledge at all because so much is automated, but I dont think that is the fault of Dataiku.
We are the judgement that Wolfram Mathematica is despite many critics based on the paradigms selected a mark in the fields of the markets for computations of all kind. Wolfram Mathematica is even a choice in fields where other bolide systems reign most of the market. Wolfram Mathematica offers rich flexibility and internally standardizes the right methodologies for his user community. Wolfram Mathematica is not cheap and in need of a hard an long learner journey. That makes it weak in comparison with of-the-shelf-solution packages or even other programming languages. But for systematization of methods Wolfram Mathematica is far in front of almost all the other. Scientist and interested people are able to develop themself further and Wolfram Matheamatica users are a human variant for themself. The reach out for modern mathematics based science is deep and a unique unified framework makes the whole field of mathematics accessable comparable to the brain of Albert Einstein. The paradigms incorporated are the most efficients and consist in assembly on the market. The mathematics is covering and fullfills not just education requirements but the demands and needs of experts.
Mathematica is incompatible with other systems for mCAx and therefore the borders between the systems are hard to overcome. Wolfram Mathematica should be consider one of the more open systems because other code can be imported and run but on the export side it is rathe incompatible by design purposes. A better standard for all that might solve the crisis but there is none in sight. Selection of knowledge of what works will be in the future even more focussed and general system might be one the lossy side. Knowledge of esthetics of what will be in the highest demand in necessary and Wolfram is not a leader in this field of science. Mathematics leves from gathering problems from application fields and less from the glory of itself and the formalization of this.
It allows straightforward integration of analytic analysis of algebraic expressions and their numerical implemented.
Supports varying programmatic paradigms, so one can choose what best fits the problem or task: pure functions, procedural programming, list processing, and even (with a bit of setup) object-oriented programming.
The extensive and rich tools for graphical rendering make it very easy to not just get 2D and 3D renderings of final output, but also to do quick-and-dirty 2D and 3D rendering of intermediate results and/or debugging results.
The integrated windows of frontend and backend in web applications make it cumbersome for the developer.
When dealing with multiple data flows, it becomes really confusing, though they have introduced a feature (Zones) to cater to this issue.
Bundling, exporting, and importing projects sometimes create issues related to code environment. If the code environment is not available, at least the schema of the flow we should be able to import should be.
The user experience is very good. Everything feels intuitive and "flows" (sorry excuse the pun) so nicely, and the customization level is also appropriate to the tool. Even as a newer data scientist, it felt easy to use and the explanations/tutorials were very good. The documentation is also at a good level
The open source user community is friendly, helpful, and responsive, at times even outdoing commercial software vendors. Documentation is also top notch, and usually resolves issues without the need for human interactions. Great product design, with a focus on user experience, also makes platform use intuitive, thus reducing the need for explicit support.
Wolfram Mathematica is a nice software package. It has very nice features and easy to install and use in your machine. Besides this, there is a nice support from Wolfram. They come to the university frequently to give seminars in Mathematica. I think this is the best thing they are doing. That is very helpful for graduate and undergraduate students who are using Mathematica in their research.
Anaconda is mainly used by professional data scientists who have profound knowledge of Python coding, mainly used for building some new algorithm block or some optimization, then the module will be integrated into the Dataiku pipeline/workflow. While Dataiku can be used by even other kinds of users.
We have evaluated and are using in some cases the Python language in concert with the Jupyter notebook interface. For UI, we using libraries like React to create visually stunning visualizations of such models. Mathematica compares favorably to this alternative in terms of speed of development. Mathematica compares unfavorably to this alternative in terms of license costs.