The DataRobot AI Platform is presented as a solution that accelerates and democratizes data science by automating the end-to-end journey from data to value and allows users to deploy AI applications at scale. DataRobot provides a centrally governed platform that gives users AI to drive business outcomes, that is available on the user's cloud platform-of-choice, on-premise, or as a fully-managed service. The solutions include tools providing data preparation enabling users to explore and…
$0
Saturn Cloud
Score 8.4 out of 10
N/A
Saturn Cloud is an ML platform for individuals and teams, available on multiple clouds: AWS, Azure, GCP, and OCI. It provides access to computing resources with customizable amounts of memory and power, including GPUs and Dask distributed computing clusters, in a wholly hosted environment. Saturn Cloud is presented as flexible and straightforward for new data scientists while giving senior and experienced staff the
capabilities and configurability they need.…
DataRobot can be used for risk assessment, such as predicting the likelihood of loan default. It can handle both classification and regression tasks effectively. It relies on historical data for model training. If you have limited historical data or the data quality is poor, it may not be the best choice as it requires a sufficient amount of high-quality data for accurate model building.
Saturn Cloud is a powerful data science platform that offers numerous benefits to organizations. It simplifies and streamlines the development, deployment, and scaling of data science and machine learning models. The platform addresses common business problems such as scalability, collaboration, efficiency, and cost-effectiveness. With Saturn Cloud, organizations can easily handle large datasets and complex computations, collaborate effectively among data science teams, automate repetitive tasks, optimize workflows, and utilize flexible and cost-efficient cloud resources. By leveraging Saturn Cloud, organizations can accelerate their data science projects, improve productivity, and achieve better outcomes in areas such as predictive modeling, recommendation systems, fraud detection, and more.
DataRobot helps, with algorithms, to analyze and decipher numerous machine-learning techniques in order to provide models to assist in company-wide decision making.
Our DataRobot program puts on an "even playing field" the strength of auto-machine learning and allows us to make decisions in an extremely timely manner. The speed is consistent without being offset by errors or false-negatives.
It encompasses many desired techniques that help companies in general, to reconfigure in to artificial intelligence driven firms, with little to no inconvenience.
The platform itself is very complicated. It probably can't function well without being complicated, but there is a big training curve to get over before you can effectively use it. Even I'm not sure if I'm effectively using it now.
The suggested model DataRobot deploys often not the best model for our purposes. We've had to do a lot of testing to make sure what model is the best. For regressive models, DataRobot does give you a MASE score but, for some reason, often doesn't suggest the best MASE score model.
The software will give you errors if output files are not entered correctly but will not exactly tell you how to fix them. Perhaps that is complicated, but being able to download a template with your data for an output file in the correct format would be nice.
While Saturn Cloud offers a range of pre-built templates and workflows, there is currently limited support for customization. For example, users may not be able to modify the pre-configured environments that come with the templates, or may find it difficult to integrate their own custom libraries and tools. Offering more flexibility in this area could help users tailor the platform to their specific needs and workflows.
While Saturn Cloud offers a variety of pre-built environments for data science and machine learning workloads, some users may prefer to use custom Docker images instead. However, the platform currently has limited support for Docker, which can be a limitation for users who need to work with specific dependencies or custom libraries. Adding more robust support for Docker could help to make the platform more versatile and adaptable to a wider range of use cases.
DataRobot presents a machine-learning platform designed by data scientists from an array of backgrounds, to construct and develop precise predictive modeling in a fraction of the time previously taken. The tech invloved addresses the critical shortage of data scientists by changing the speed and economics of predictive analytics. DataRobot utilizes parallel processing to evaluate models in R, Python, Spark MLlib, H2O and other open source databases. It searches for possible permutations and algorithms, features, transformation, processes, steps and tuning to yield the best models for the dataset and predictive goal.
This is user friendly , better than its counterparts. Anyone familiar working with other cloud solutions for GPU will agree on this. Hence the rating of 10 was given to this. I personally love the fact that I get so much compute time for being a free user which is very efficient in terms of budget
As I am writing this report I am participating with Datarobot Engineers in an complex environment and we have their whole support. We are in Mexico and is not common to have this commitment from companies without expensive contract services. Installing is on premise and the client does not want us to take control and they, the client, is also limited because of internal IT regulations ,,, soo we are just doing magic and everybody is committed.
I've done machine learning through python before, however having to code and test each model individually was very time consuming and required a lot of expertise. The data Robot approach, is an excellent way of getting to a well placed starting point. You can then pick up the model from there and fine tune further if you need.
Saturn Cloud provides an R server, that's super important. Even you can write R on CoLab with different settings, but it is inconvenient and slow. Saturn Cloud can give me a different IDE environment that I'm more used to, even if I'm using Python. Whereas CoLab is more dedicated to Jupyter notebook
Although we are still in the implementation phase with Saturn Cloud, we anticipate significant positive impacts on our business objectives.
The platform is expected to enhance our computational capabilities with its easy access to top-tier NVIDIA GPUs, which should accelerate our AI and machine learning projects. We believe this will lead to reduced development times and faster deployment of our generative AI models.
While Saturn Cloud provides excellent computational resources and reliable uptime, I find that their user interface could be improved. The UI can be unintuitive at times, making it a bit challenging to navigate and configure certain settings. Enhancing the user interface to be more streamlined and user-friendly would significantly improve the overall experience. Having pre-configured stacks readily available would also save time and make the platform even more efficient to use.