Astra DB is a vector database for developers. In 2025 Datastax, the developer and supporter of Astra DB, was acquired. Astra DB is now available as a component of the IBM watsonx.data Multicloud offering.
N/A
Titan
Score 8.0 out of 10
N/A
Titan is an open-source distributed graph database developed by Aurelius. Aurelius is now part of Datastax (since February 2015).
N/A
Pricing
Astra DB, now part of IBM watsonx.data
Titan Distributed Graph Database
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Astra DB, now part of IBM watsonx.data
Titan
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
Yes
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Astra DB, now part of IBM watsonx.data
Titan Distributed Graph Database
Features
Astra DB, now part of IBM watsonx.data
Titan Distributed Graph Database
Vector Database
Comparison of Vector Database features of Product A and Product B
We've been super happy with Astra DB. It's been extremely well-suited for our vector search needs as described in previous responses. With Astra DB’s high-performance vector search, Maester’s AI dynamically optimizes responses in real-time, adapting to new user interactions without requiring costly retraining cycles.
Titan is definitely a good choice, but it has its learning curve. The documentation may lack in places, and you might have to muster answers from different sources and technologies. But at its core, it does the job of storing and querying graph databases really well. Remember that titan itself is not the whole component, but utilizes other technologies like cassandra, gremlin, tinkerpop, etc to do many other things, and each of them has a learning curve. I would recommend titan for a team, but not for a single person. For single developer, go with Neo4j.
We need to be able to process a lot of data (our biggest clients process hundreds of milions of transactions every month). However, it is not only the amount of data, it is also an unpredictable patterns with spikes occuring at different points of time - something athat Astra is great at.
Our processing needs to be extremaly fast. Some of our clients use our enrichment in a synchronous way, meaning that any delay in processing is holding up the whole transaction lifecycle and can have a major impact on the client. Astra is very fast.
A close collaboration with GCP makes our life very easy. All of our technology sits in Google Cloud, so having Astra in there makes it a no-brainer solution for us.
The support team sometimes requires the escalate button pressed on tickets, to get timely responses. I will say, once the ticket is escalated, action is taken.
They require better documentation on the migration of data. The three primary methods for migrating large data volumes are bulk, Cassandra Data Migrator, and ZDM (Zero Downtime Migration Utility). Over time I have become very familiar will all three of these methods; however, through working with the Services team and the support team, it seemed like we were breaking new ground. I feel if the utilities were better documented and included some examples and/or use cases from large data migrations; this process would have been easier. One lesson learned is you likely need to migrate your application servers to the same cloud provider you host Astra on; otherwise, the latency is too large for latency-sensitive applications.
The community is lacking deep documentation. I had to spend many nights trying to figure many things on my own. As graph databases will grow popular, I am sure this will be improved.
Not enough community support. Even in SO you might not find many questions. Though there are some users in SO who quickly answer graph database questions. Need more support.
Their response time is fast, in case you do not contact them during business hours, they give a very good follow-up to your case. They also facilitate video calls if necessary for debugging.
Graph, search, analytics, administration, developer tooling, and monitoring are all incorporated into a single platform by Astra DB. Mongo Db is a self-managed infrastructure. Astra DB has Wide column store and Mongo DB has Document store. The best thing is that Astra DB operates on Java while Mongo DB operates on C++
To be honest, titan is not as popular as Neo4j, though they do the same thing. In my personal opinion, titan has lot of potential, but Neo4j is easier to use. If the organization is big enough, it might choose titan because of its open source nature, and high scalability, but Neo4j comes with a lot of enterprise and community support, better query, better documentation, better instructions, and is also backed by leading tech companies. But titan is very strong when you consider standards. Titan follows gremlin and tinkerpop, both of which will be huge in future as more graph database vendors join the market. If things go really well, maybe Neo4j might have to support gremlin as well.
We are well aware of the Cassandra architecture and familiar with the open source tooling that Datastax provides the industry (K8sSandra / Stargate) to scale Cassandra on Kubernetes.
Having prior knowledge of Cassandra / Kubernetes means we know that under the hood Astra is built on infinitely scalable technologies. We trust that the foundations that Astra is built on will scale so we know Astra will scale.