DataStax Enterprise (DSE) is the scale-out, cloud-native NoSQL database built on Apache Cassandra. DSE is Developer Ready providing developers the freedom of choice of REST, GraphQL, CQL and JSON/Document APIs.
N/A
MongoDB
Score 8.5 out of 10
N/A
MongoDB is an open source document-oriented database system. It is part of the NoSQL family of database systems. Instead of storing data in tables as is done in a "classical" relational database, MongoDB stores structured data as JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain types of applications easier and faster.
$0.10
million reads
Pricing
DataStax Enterprise
MongoDB
Editions & Modules
No answers on this topic
Shared
$0
per month
Serverless
$0.10million reads
million reads
Dedicated
$57
per month
Offerings
Pricing Offerings
DataStax Enterprise
MongoDB
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
Fully managed, global cloud database on AWS, Azure, and GCP
More Pricing Information
Community Pulse
DataStax Enterprise
MongoDB
Considered Both Products
DataStax Enterprise
Verified User
Employee
Chose DataStax Enterprise
DataStax has an amazing community built around it and is also Cassandra is an open-source technology. The customer support is quite good compared to other vendors. Though you initially need to spend some hefty amount on infrastructure, in the long run, it makes up for it. We …
We chose datastax because we need a system always available and capable of ingesting a large amount of data per second, even if eventually consistent and with multi data center sync native support.
We considered Cloudera as an alternative using Kafka as the ingestion layer but …
Real-time transaction processing (both reads and writes) is where DataStax Enterprise shines. It's very fast with linear scalability should more resources be needed. Additional nodes are added very easily. DataStax Enterprise on its own (without Solr or Spark enabled) isn't well suited for long complicated reports. The data model doesn't support joining multiple tables together which is common in BI reporting.
If asked by a colleague I would highly recommend MongoDB. MongoDB provides incredible flexibility and is quick and easy to set up. It also provides extensive documentation which is very useful for someone new to the tool. Though I've used it for years and still referenced the docs often. From my experience and the use cases I've worked on, I'd suggest using it anywhere that needs a fast, efficient storage space for non-relational data. If a relational database is needed then another tool would be more apt.
Datastax Cassandra provides high availability and good performance for a database. It is built on top of open source Apache Cassandra so you can always somewhat understand the internal functioning and why.
Datastax Cassandra is fairly simple to start using, you can install/setup your cluster and be productive in 1 day.
Datastax Cassandra provides a lot of good detailed documentation, and when starting, the detailed free videos on the Datastax site and documentation are very helpful.
Datastax Enterprise Edition of Cassandra provides more tools, good support, and quick response SLA for enterprise business support.
Being a JSON language optimizes the response time of a query, you can directly build a query logic from the same service
You can install a local, database-based environment rather than the non-relational real-time bases such a firebase does not allow, the local environment is paramount since you can work without relying on the internet.
Forming collections in Mango is relatively simple, you do not need to know of query to work with it, since it has a simple graphic environment that allows you to manage databases for those who are not experts in console management.
An aggregate pipeline can be a bit overwhelming as a newcomer.
There's still no real concept of joins with references/foreign keys, although the aggregate framework has a feature that is close.
Database management/dev ops can still be time-consuming if rolling your own deployments. (Thankfully there are plenty of providers like Compose or even MongoDB's own Atlas that helps take care of the nitty-gritty.
I am looking forward to increasing our SaaS subscriptions such that I get to experience global replica sets, working in reads from secondaries, and what not. Can't wait to be able to exploit some of the power that the "Big Boys" use MongoDB for.
There is a bit of a learning curve and tasks that are simple in traditional RDBMS systems can be complicated with DataStax Enterprise but once you get the hang of denormalizing data and getting the data model correct DataStax Enterprise is very usable. Usability from the developer's standpoint is very simple - the complication is on the architecture side with the data model.
NoSQL database systems such as MongoDB lack graphical interfaces by default and therefore to improve usability it is necessary to install third-party applications to see more visually the schemas and stored documents. In addition, these tools also allow us to visualize the commands to be executed for each operation.
DataStax has the best community. They have instant customer support to solve problems and are knowledgeable of the problems faced by the customer. The documentation is pretty top-notch.
Finding support from local companies can be difficult. There were times when the local company could not find a solution and we reached a solution by getting support globally. If a good local company is found, it will overcome all your problems with its global support.
While the setup and configuration of MongoDB is pretty straight forward, having a vendor that performs automatic backups and scales the cluster automatically is very convenient. If you do not have a system administrator or DBA familiar with MongoDB on hand, it's a very good idea to use a 3rd party vendor that specializes in MongoDB hosting. The value is very well worth it over hosting it yourself since the cost is often reasonable among providers.
DataStax Enterprise offered best-in-class write performance and scalability. The customer support team was very helpful in the adoption of new technology.
We have [measured] the speed in reading/write operations in high load and finally select the winner = MongoDBWe have [not] too much data but in case there will be 10 [times] more we need Cassandra. Cassandra's storage engine provides constant-time writes no matter how big your data set grows. For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support.
Open Source w/ reasonable support costs have a direct, positive impact on the ROI (we moved away from large, monolithic, locked in licensing models)
You do have to balance the necessary level of HA & DR with the number of servers required to scale up and scale out. Servers cost money - so DR & HR doesn't come for free (even though it's built into the architecture of MongoDB