Likelihood to Recommend Google BigQuery is great for being the central datastore and entry point of data if you're on GCP. It seamlessly integrates with other Google products, meaning you can ingest data from other Google products with ease and little technical knowledge, and all of it is near real-time. Being serverless, BigQuery will scale with you, which means you don't have to worry about contention or spikes in demand/storage. This can, however, mean your costs can run away quickly or mount up at short notice.
Read full review My recommendation obviously would depend on the application. But I think given the right requirements, IBM DB2 Big SQL is definitely a contender for a database platform. Especially when disparate data and multiple data stores are involved. I like the fact I can use the product to federate my data and make it look like it's all in one place. The engine is high performance and if you desire to use Hadoop, this could be your platform.
Gene Baker Vice President, Chief Architect, Development Manager and Software Engineer
Read full review Pros First and foremost - Google BigQuery is great at quickly analyzing large amounts of data, which helps us understand things like customer behavior or product performance without waiting for a long time. It is very easy to use. Anyone in our team can easily ask questions about our data using simple language, like asking ChatGPT a question. This means everyone can find important information from our data without needing to be a data expert. It plays nicely with other tools we use, so we can seamlessly connect it with things like Google Cloud Storage for storing data or Data Studio for creating visual reports. This makes our work smoother and helps us collaborate better across different tasks. Read full review data storage data manipulation data definitions data reliability Read full review Cons It is challenging to predict costs due to BigQuery's pay-per-query pricing model. User-friendly cost estimation tools, along with improved budget alerting features, could help users better manage and predict expenses. The BigQuery interface is less intuitive. A more user-friendly interface, enhanced documentation, and built-in tutorial systems could make BigQuery more accessible to a broader audience. Read full review Cloud readiness. Ease of implementation. Gene Baker Vice President, Chief Architect, Development Manager and Software Engineer
Read full review Likelihood to Renew We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review Usability web UI is easy and convenient. Many RDBMS clients such as aqua data studio, Dbeaver data grid, and others connect. Range of well-documented APIs available. The range of features keeps expanding, increasing similar features to traditional RDBMS such as Oracle and DB2
Read full review IBM DB2 is a solid service but hasn't seen much innovation over the past decade. It gets the job done and supports our IT operations across digital so it is fair.
Read full review Support Rating BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review IBM did a good job of supporting us during our evaluation and proof of concept. They were able to provide all necessary guidance, answer questions, help us architect it, etc. We were pleased with the support provided by the vendor. I will caveat and say this support was all before the sale, however, we have a ton of IBM products and they provide the same high level of support for all of them. I didn't see this being any different. I give IBM support two thumbs up!
Gene Baker Vice President, Chief Architect, Development Manager and Software Engineer
Read full review Alternatives Considered PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review MS SQL Server was ruled out given we didn't feel we could collapse environments. We thought of MS-SQL as more of a one for one replacement for Sybase ASE, i.e., server for server.
SAP HANA was evaluated and given a big thumbs up but was rejected because the SQL would have to be rewritten at the time (now they have an accelerator so you don't have to). Also, there was a very low adoption rate within the enterprise. IBM DB2 Big SQL was not selected even though technically it achieved high scores, because we could not find readily available talent and low adoption rate within the enterprise (basically no adoption at the time). We ended up selecting Exadata because of the high adoption rate within the enterprise even though technically HANA and Big SQL were superior in our evaluations.
Gene Baker Vice President, Chief Architect, Development Manager and Software Engineer
Read full review Contract Terms and Pricing Model None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review Professional Services Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review Return on Investment Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time. We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance. Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution. Read full review better data visibility solid reliability for mission critical data Read full review ScreenShots Google BigQuery Screenshots