Google BigQuery

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Google BigQuery
Score 8.8 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Pricing
Google BigQuery
Editions & Modules
Standard edition
$0.04 / slot hour
Enterprise edition
$0.06 / slot hour
Enterprise Plus edition
$0.10 / slot hour
Offerings
Pricing Offerings
Google BigQuery
Free Trial
Yes
Free/Freemium Version
Yes
Premium Consulting/Integration Services
No
Entry-level Setup FeeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Google BigQuery
Considered Both Products
Google BigQuery
Chose Google BigQuery
is much better as it’s easily accessible provides velvet documentation and fulfils all our needs as well as easily integrated into clients, environment
Chose Google BigQuery
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Chose Google BigQuery
Google BigQuery is simpler and I say it has simpler UI too.
If you have a clear long term ask , mainly business intelligence needs then Google BigQuery offers you good.
If you need too much of features under a single cloud and you are ok to be lil clumsy then you can check …
Chose Google BigQuery
I have used most of the data analytics platforms. Based on my work, I have found that the user interface of Google BigQuery is simple to navigate. I like the front view - ease of joining tables, and integration with other platforms.
Chose Google BigQuery
Compared to every other analytics DB solution I've used, Google BigQuery was by far the easiest to set up and maintain, and scale.
The price was also much lower for our use case (internal data analysis).
Chose Google BigQuery
For our usage, Google BigQuery is cheaper and more performant. The others have their place, but in certain scenarios, Google BigQuery is a better solution.
Chose Google BigQuery
We actually use Snowflake and BigQuery in tandem because they both currently meet various needs. Redshift, however, has barely been used since our migration away from it. In the case of both Snowflake and BigQuery, they beat Redshift by a long shot. The main reasons are their …
Chose Google BigQuery
I came to use BigQuery from a traditional system like MS SQL server, the features which are available in BigQuery as a cloud service far outweigh the features from SQL server. I have not used other similar tools like Amazon Redshift but Google BigQuery serves multiple use cases …
Chose Google BigQuery
Google BigQuery is cheaper and much faster as compared to both. While as compared to Snowflake , we tested it was faster and cheaper by 30%, that is after Snowflake tweaked their environment, if not for that it would have been 90% cheaper than Snowflake. Redshift is not easy …
Chose Google BigQuery
In my opinion, Google BigQuery is custom made to be the best data lake system that is easy to use, scalas to fit any business size, has inbuilt security, as well as tools for data integrity. Although a few other tools have some of the same functionality, Google BigQuery is the …
Chose Google BigQuery
It's easier to connect data between BigQuery and Looker Studio instead of connecting the data between BigQuery and Tableau in terms of data explore or dashboard creating. Therefore we are considering migrating dashboards from Tableau to Looker Studio for the whole company.
On …
Chose Google BigQuery
When comparing Google BigQuery and Databricks, both platforms are powerful tools for managing and analyzing large datasets. BQ is ideal for businesses requiring large-scale analytics, reporting, and dashboarding with minimal operational overhead. It’s also great for ad-hoc …
Chose Google BigQuery
Google BigQuery's main advantage over its direct competitors (Amazon Redshift and Azure Synapse) is that it is widely supported by non-Google software, while the others rely heavily on their own cloud ecosystems.
Chose Google BigQuery
I have used other data manipulation tools like SQL Server and Google BigQuery feels more intuitive, Google provides so much documentation and tutorials that getting to know the software is not only easy but even satisfactory, so I'd say Google BigQuery is very superior to that …
Chose Google BigQuery
Main reason is how it integrates directly with the google ecosystem which really facilitates the automatization proceses for the whole company. This ensures that sales and all the other departments have the correct information on a daily bases with a ease of use with day to day …
Chose Google BigQuery
Amazon Redshift was a likely alternative we were considering , but it needs to be provisioned on cluster and nodes, which increases infrastructure management, whereas Google BigQuery is serverless, so no infra management :) Also, I remember when comparing them we did found out …
Chose Google BigQuery
I personally find it by far simpler than Amazon Redshift due it's onboarding seamlessness. For a quick start and simplify tye access to read the data big query provide better user experience and a smoother user interface. More importantly, the fact that Big Query can be easily …
Chose Google BigQuery
Its same as compared to Big query. We go with big query because of clients requirements in project.
Chose Google BigQuery
Google BigQuery works similarly to AWS. We ended up going with Google BigQuery due to contractual restrictions imposed by one of our customers.
Chose Google BigQuery
Google BigQuery i would say is better to use than AWS Redshift but not SQL products but this could be due to being more experience in Microsoft and AWS products. It would be really nice if it could use standard SQL server coding rather than having to learn another dialect of …
Chose Google BigQuery
Google BigQuery as a platform allows for more integrations and customizability than many other offerings. Users mostly need to understand the basics of database and SQL programming in order to get the most from the product. However, other products like Hevo do have less of a …
Chose Google BigQuery
There are some areas in which this product is better while there are some in which others do better. It's not like Google BigQuery surpasses them in every metric. For a holistic view, I will say we use this because of - scalability, performance, ease of use, and seamless …
Chose Google BigQuery
The data performance of Google BigQuery is best as per other software. Limitations on Google BigQuery's data size are superior to those of Microsoft SQL. Obtaining real-time data from several IoT devices is another benefit.
Chose Google BigQuery
I've used Domo while working for an advertising agency and the functionality was way worse and the user interface was not near as good.
Chose Google BigQuery
Compared to SingleStore, BigQuery has a big advantage of being completely serverless, and without practical limitations.

Compared to RedShift, we found the cost model to be more fitted to our needs.
Top Pros
Top Cons
Features
Google BigQuery
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
Google BigQuery
8.4
73 Ratings
4% below category average
Automatic software patching8.017 Ratings
Database scalability9.172 Ratings
Automated backups8.524 Ratings
Database security provisions8.866 Ratings
Monitoring and metrics8.268 Ratings
Automatic host deployment8.013 Ratings
Best Alternatives
Google BigQuery
Small Businesses
IBM Cloudant
IBM Cloudant
Score 7.6 out of 10
Medium-sized Companies
IBM Cloudant
IBM Cloudant
Score 7.6 out of 10
Enterprises
IBM Cloudant
IBM Cloudant
Score 7.6 out of 10
All AlternativesView all alternatives
User Ratings
Google BigQuery
Likelihood to Recommend
8.8
(73 ratings)
Likelihood to Renew
7.8
(3 ratings)
Usability
7.7
(5 ratings)
Support Rating
7.5
(10 ratings)
Contract Terms and Pricing Model
10.0
(1 ratings)
Professional Services
8.2
(2 ratings)
User Testimonials
Google BigQuery
Likelihood to Recommend
Google
Google BigQuery is great for being the central datastore and entry point of data if you're on GCP. It seamlessly integrates with other Google products, meaning you can ingest data from other Google products with ease and little technical knowledge, and all of it is near real-time. Being serverless, BigQuery will scale with you, which means you don't have to worry about contention or spikes in demand/storage. This can, however, mean your costs can run away quickly or mount up at short notice.
Read full review
Pros
Google
  • First and foremost - Google BigQuery is great at quickly analyzing large amounts of data, which helps us understand things like customer behavior or product performance without waiting for a long time.
  • It is very easy to use. Anyone in our team can easily ask questions about our data using simple language, like asking ChatGPT a question. This means everyone can find important information from our data without needing to be a data expert.
  • It plays nicely with other tools we use, so we can seamlessly connect it with things like Google Cloud Storage for storing data or Data Studio for creating visual reports. This makes our work smoother and helps us collaborate better across different tasks.
Read full review
Cons
Google
  • It is challenging to predict costs due to BigQuery's pay-per-query pricing model. User-friendly cost estimation tools, along with improved budget alerting features, could help users better manage and predict expenses.
  • The BigQuery interface is less intuitive. A more user-friendly interface, enhanced documentation, and built-in tutorial systems could make BigQuery more accessible to a broader audience.
Read full review
Likelihood to Renew
Google
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review
Usability
Google
web UI is easy and convenient. Many RDBMS clients such as aqua data studio, Dbeaver data grid, and others connect. Range of well-documented APIs available. The range of features keeps expanding, increasing similar features to traditional RDBMS such as Oracle and DB2
Read full review
Support Rating
Google
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review
Alternatives Considered
Google
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review
Contract Terms and Pricing Model
Google
None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review
Professional Services
Google
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review
Return on Investment
Google
  • Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
  • We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
  • Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Read full review
ScreenShots

Google BigQuery Screenshots

Screenshot of Migrating data warehouses to BigQuery - Features a streamlined migration path from Netezza, Oracle, Redshift, Teradata, or Snowflake to BigQuery using the fully managed BigQuery Migration Service.Screenshot of bringing any data into BigQuery - Data files can be uploaded from local sources, Google Drive, or Cloud Storage buckets, using BigQuery Data Transfer Service (DTS), Cloud Data Fusion plugins, by replicating data from relational databases with Datastream for BigQuery, or by leveraging Google's data integration partnerships.Screenshot of generative AI use cases with BigQuery and Gemini models - Data pipelines that blend structured data, unstructured data and generative AI models together can be built to create a new class of analytical applications. BigQuery integrates with Gemini 1.0 Pro using Vertex AI. The Gemini 1.0 Pro model is designed for higher input/output scale and better result quality across a wide range of tasks like text summarization and sentiment analysis. It can be accessed using simple SQL statements or BigQuery’s embedded DataFrame API from right inside the BigQuery console.Screenshot of insights derived from images, documents, and audio files, combined with structured data - Unstructured data represents a large portion of untapped enterprise data. However, it can be challenging to interpret, making it difficult to extract meaningful insights from it. Leveraging the power of BigLake, users can derive insights from images, documents, and audio files using a broad range of AI models including Vertex AI’s vision, document processing, and speech-to-text APIs, open-source TensorFlow Hub models, or custom models.Screenshot of event-driven analysis - Built-in streaming capabilities automatically ingest streaming data and make it immediately available to query. This allows users to make business decisions based on the freshest data. Or Dataflow can be used to enable simplified streaming data pipelines.Screenshot of predicting business outcomes AI/ML - Predictive analytics can be used to streamline operations, boost revenue, and mitigate risk. BigQuery ML democratizes the use of ML by empowering data analysts to build and run models using existing business intelligence tools and spreadsheets.