H2O.ai vs. IBM watsonx.ai

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
H2O.ai
Score 6.3 out of 10
N/A
An open-source end-to-end GenAI platform for air-gapped, on-premises or cloud VPC deployments. Users can Query and summarize documents or just chat with local private GPT LLMs using h2oGPT, an Apache V2 open-source project. And the commercially available Enterprise h2oGPTe provides information retrieval on internal data, privately hosts LLMs, and secures data.N/A
IBM watsonx.ai
Score 8.7 out of 10
N/A
Watsonx.ai is part of the IBM watsonx platform that brings together new generative AI capabilities, powered by foundation models, and traditional machine learning into a studio spanning the AI lifecycle. Watsonx.ai can be used to train, validate, tune, and deploy generative AI, foundation models, and machine learning capabilities, and build AI applications with less time and data.
$0
Pricing
H2O.aiIBM watsonx.ai
Editions & Modules
No answers on this topic
Free Trial
$0
ML functionality (20 CUH limit /month); Inferencing (50,000 tokens / month)
Standard
$1,050
Monthly tier fee; additional usage based fees
Essentials
Contact Sales
Usage based fees
Offerings
Pricing Offerings
H2O.aiIBM watsonx.ai
Free Trial
NoYes
Free/Freemium Version
YesYes
Premium Consulting/Integration Services
NoYes
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsPricing for watsonx.ai includes: model inference per 1000 tokens and ML tools and ML runtimes based on capacity unit hours.
More Pricing Information
Community Pulse
H2O.aiIBM watsonx.ai
Best Alternatives
H2O.aiIBM watsonx.ai
Small Businesses

No answers on this topic

InterSystems IRIS
InterSystems IRIS
Score 7.9 out of 10
Medium-sized Companies

No answers on this topic

Posit
Posit
Score 9.9 out of 10
Enterprises

No answers on this topic

Posit
Posit
Score 9.9 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
H2O.aiIBM watsonx.ai
Likelihood to Recommend
8.1
(3 ratings)
8.2
(14 ratings)
Usability
-
(0 ratings)
8.0
(4 ratings)
Support Rating
9.0
(1 ratings)
-
(0 ratings)
User Testimonials
H2O.aiIBM watsonx.ai
Likelihood to Recommend
H2O.ai
Most suited if in little time you wanted to build and train a model. Then, H2O makes life very simple. It has support with R, Python and Java, so no programming dependency is required to use it. It's very simple to use. If you want to modify or tweak your ML algorithm then H2O is not suitable. You can't develop a model from scratch.
Read full review
IBM
I have built a code accelerator tool for one of the IBM product implementation. Although there was a heavy lifting at the start to train the model on specifics of the packaged solution library and ways of working; the efficacy of the model is astounding. Having said that, watsonx.ai is very well suited for customer service automation, healthcare data analytics, financial fraud detection, and sentiment analysis kind of projects. The Watsonx.ai look and feel is little confusing but I understand over a period of time , it will improve dramatically as well. I do feel that Watsonx.ai has certain limitations from cross-platform deployment flexibility. If an organization is deeply invested in a multi-cloud environment, Watson's integration on other cloud platforms may not be seamless comported to other AI platforms.
Read full review
Pros
H2O.ai
  • Excellent analytical and prediction tool
  • In the beginning, usage of H20 Flow in Web UI enables quick development and sharing of the analytical model
  • Readily available algorithms, easy to use in your analytical projects
  • Faster than Python scikit learn (in machine learning supervised learning area)
  • It can be accessed (run) from Python, not only JAVA etc.
  • Well documented and suitable for fast training or self studying
  • In the beginning, one can use the clickable Flow interface (WEB UI) and later move to a Python console. There is then no need to click in H20 Flow
  • It can be used as open source
Read full review
IBM
  • It allows specialists to apply several base models for specific subtasks in the field of NLP.
  • Gives the availability of many models developed for AI enhancement for different solutions.
  • Has incorporated functionality for data governance and security to support access to AI tools by multiple users.
Read full review
Cons
H2O.ai
  • Better documentation
  • Improve the Visual presentations including charting etc
Read full review
IBM
  • Accessing the many different cloud features and tools requires spending time to understand the structure.
  • IBM offers so much but it is often hard to find what you are looking for.
  • Understanding the cost implications of using features and tools requires some effort.
Read full review
Usability
H2O.ai
No answers on this topic
IBM
I needed some time to understand the different parts of the web UI. It was slightly overwhelming in the beginning. However, after some time, it made sense, and I like the UI now. In terms of functionality, there are many useful features that make your life easy, like jumping to a section and giving me a deployment space to deploy my models easily.
Read full review
Support Rating
H2O.ai
The overall experience I have with H2O is really awesome, even with its cost effectiveness.
Read full review
IBM
No answers on this topic
Alternatives Considered
H2O.ai
Both are open source (though H2O only up to some level). Both comprise of deep learning, but H2O is not focused directly on deep learning, while Tensor Flow has a "laser" focus on deep learning. H2O is also more focused on scalability. H2O should be looked at not as a competitor but rather a complementary tool. The use case is usually not only about the algorithms, but also about the data model and data logistics and accessibility. H2O is more accessible due to its UI. Also, both can be accessed from Python. The community around TensorFlow seems larger than that of H2O.
Read full review
IBM
IBM watsonx.ai stands out in the ecosystem of artificial intelligence tools for its combination of flexibility, scalability and the ability to integrate multiple services in a single environment IBM watsonx.ai se destaca no ecossistema de ferramentas de inteligência artificial por sua combinação de flexibilidade, escalabilidade e capacidade de integrar múltiplos serviços em um único ambiente
Read full review
Return on Investment
H2O.ai
  • Positive impact: saving in infrastructure expenses - compared to other bulky tools this costs a fraction
  • Positive impact: ability to get quick fixes from H2O when problems arise - compared to waiting for several months/years for new releases from other vendors
  • Positive impact: Access to H2O core team and able to get features that are needed for our business quickly added to the core H2O product
Read full review
IBM
  • Seamless ingestion into IBM suite of products improved the end user productivity and helped users in insights-backed decision making
  • The technical interfacing with commercially off the shelf products helps in reducing the overall cycle time for implementation and upgrades.
  • The cost of the licensing could be more competitive.
Read full review
ScreenShots

IBM watsonx.ai Screenshots

Screenshot of the foundation models available in watsonx.ai. Clients have access to IBM selected open source models from Hugging Face, as well as other third-party models, and a family of IBM-developed foundation models of different sizes and architectures.Screenshot of the Prompt Lab in watsonx.ai, where AI builders can work with foundation models and build prompts using prompt engineering techniques in watsonx.ai to support a range of Natural Language Processing (NLP) type tasks.Screenshot of the Tuning Studio in watsonx.ai, where AI builders can tune foundation models with labeled data for better performance and accuracy.Screenshot of the data science toolkit in watsonx.ai where AI builders can build machine learning models automatically with model training, development, visual modeling, and synthetic data generation.