HPE Data Fabric (formerly MapR, acquired by HPE in 2019) is a software-defined datastore and file system that simplifies data management and analytics by unifying data across core, edge, and multicloud sources into a single platform.
N/A
SAP Data Intelligence
Score 8.3 out of 10
N/A
SAP Data Intelligence is presented by the vendor as a single solution to innovate with data. It provides data-driven innovation in the cloud, on premise, and through BYOL deployments. It is described by the vendor as the new evolution of the company's data orchestration and management solution running on Kubernetes, released by SAP in 2017 to deal with big data and complex data orchestration working across distributed landscapes and processing engine.
If you have an SAP products ecosystem in your IT landscape, it becomes a no-brainer to go ahead with an SAP Data Intelligence product for your data orchestration, data management, and advanced data analytics needs, such as data preparation for your AI/ML processes. It provides a seamless integration with other SAP products.
MapR had very fast I/O throughput. The write speed was several times faster than what we could achieve with the other Hadoop vendors (Cloudera and Hortonworks). This is because MapR does not use HDFS, which is essentially a "meta filesystem". HDFS is built on top of the filesystem provided by the OS. MapR has their filesystem called MapR-FS, which is a true filesystem and accesses the raw disk drives.
The MapR filesystem is very easy to integrate with other Linux filesystems. When working with HDFS from Apache Hadoop, you usually have to use either the HDFS API or various Hadoop/HDFS command line utilities to interact with HDFS. You cannot use command line utilities native to the host operation system, which is usually Linux. At least, it is not easily done without setting up NFS, gateways, etc. With MapR-FS, you can mount the filesystem within Linux and use the standard Unix commands to manipulate files.
The HBase distribution provided by MapR is very similar to the Apache HBase distribution. Cloudera and Hortonworks add GUIs and other various tools on top of their HBase distributions. The MapR HBase distribution is very similar to the Apache distribution, which is nice if you are more accustomed to using Apache HBase.
Data transfer speed tends to be slow when there is poor internet connection since SAP Data Intelligence don’t synchronize data while offline. However, this is not vendor fault, that’s why we have implemented robust wireless technology internet connection in our organization.
Allow collaborations among various personas with insights as ratings and comments on the datasets Reuse knowledges on the datasets for new users Next-Gen Data Management and Artificial Intelligence
I think the troubleshooting process might be streamlined with improved error recording and tracing. A lot of information about issues and how to fix them is hidden away in the Kubernetes pods themselves. I'm not sure whether SAP Data Intelligence can fix this problem it may be connected to Kubernetes's design, in which case fixing it could need modifications inside Kubernetes itself.
Initially we struggle to get help from SAP but then dedicated Dev angel was assigned to us and that simplify the overall support scenario. There is still room of improvement in documentation around SAP Data intelligence. We struggle a lot to initially understand the feature and required help around performance improvement area,
One of the reasons to pick SAP Data Intelligence is the speed and security it provides, in addition to the excellent support it provides. It is also compatible with all popular databases, which is another reason to choose it.
Increased employee efficiency for sure. Our clients have various levels of expertise in their deployment and user teams, and we never receive complaints about MapR.
MapR is used by one of our financial services clients who uses it for fraud detection and user pattern analysis. They are able to turn around data much faster than they previously had with in-house applications