Well suited for my big data related project or a static data set analysis especially for uploading huge dataset to the cluster.
But had some issues with connecting IoT real-time data and feeding to Power BI. It might be my understanding please take it as a mere comment rather than a suggestion.
MySQL is best suited for applications on platform like high-traffic content-driven websites, small-scale web apps, data warehouses which regards light analytical workloads. However its less suited for areas like enterprise data warehouse, OLAP cubes, large-scale reporting, applications requiring flexible or semi-structured data like event logging systems, product configurations, dynamic forms.
Easier pricing and plug-and-play like you see with AWS and Azure, it would be nice from a budgeting and billing standpoint, as well as better support for the administration.
Bundling of the Cloud Object Storage should be included with the Analytics Engine.
The inability to add your own Hadoop stack components has made some transfers a little more complex.
Learning curve: is big. Newbies will face problems in understanding the platform initially. However, with plenty of online resources, one can easily find solutions to problems and learn on the go.
Backup and restore: MySQL is not very seamless. Although the data is never ruptured or missed, the process involved is not very much user-friendly. Maybe, a new command-line interface for only the backup-restore functionality shall be set up again to make this very important step much easier to perform and maintain.
For teaching Databases and SQL, I would definitely continue to use MySQL. It provides a good, solid foundation to learn about databases. Also to learn about the SQL language and how it works with the creation, insertion, deletion, updating, and manipulation of data, tables, and databases. This SQL language is a foundation and can be used to learn many other database related concepts.
I give MySQL a 9/10 overall because I really like it but I feel like there are a lot of tech people who would hate it if I gave it a 10/10. I've never had any problems with it or reached any of its limitations but I know a few people who have so I can't give it a 10/10 based on those complaints.
We have never contacted MySQL enterprise support team for any issues related to MySQL. This is because we have been using primarily the MySQL Server community edition and have been using the MySQL support forums for any questions and practical guidance that we needed before and during the technical implementations. Overall, the support community has been very helpful and allowed us to make the most out of the community edition.
We initially wanted to go with Google BigQuery, mainly for the name recognition. However, the pricing and support structure led us to seek alternatives, which pointed us to IBM. Apache Spark was also in the running, but here IBM's domination in the industry made the choice a no-brainer. As previously stated, the support received was not quite what we expected, but was adequate.
MongoDB has a dynamic schema for how data is stored in 'documents' whereas MySQL is more structured with tables, columns, and rows. MongoDB was built for high availability whereas MySQL can be a challenge when it comes to replication of the data and making everything redundant in the event of a DR or outage.
This product has allowed us to gather analytics data across multiple platforms so we can view and analyze the data from different workflows, all in one place.
IBM Analytics has allowed us to scale on demand which allows us to capture more and more data, thus increasing our ROI.
The convenience of the ability to access and administer the product via multiple interfaces has allowed our administrators to ensure that the application is making a positive ROI for our business users and partners.