IBM BigInsights is an analytics and data visualization tool leveraging hadoop.
N/A
Mathematica
Score 7.0 out of 10
N/A
Wolfram's flagship product Mathematica is a modern technical computing application featuring a flexible symbolic coding language and a wide array of graphing and data visualization capabilities.
$1,520
per year
Pricing
IBM Analytics Engine
Wolfram Mathematica
Editions & Modules
No answers on this topic
Standard Cloud
$1,520
per year
Standard Desktop
$3,040
one-time fee
Standard Desktop & Cloud
$3,344
one-time fee
Mathematica Enterprise Edition
$8,150.00
one-time fee
Offerings
Pricing Offerings
IBM Analytics Engine
Mathematica
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
Discounts available for students and educational institutions. The Network Edition reduce per-user license costs through shared deployment across any number of machines on a local-area network.
More Pricing Information
Community Pulse
IBM Analytics Engine
Wolfram Mathematica
Features
IBM Analytics Engine
Wolfram Mathematica
BI Standard Reporting
Comparison of BI Standard Reporting features of Product A and Product B
IBM Analytics Engine
-
Ratings
Wolfram Mathematica
9.9
6 Ratings
20% above category average
Pixel Perfect reports
00 Ratings
9.84 Ratings
Customizable dashboards
00 Ratings
9.94 Ratings
Report Formatting Templates
00 Ratings
9.96 Ratings
Ad-hoc Reporting
Comparison of Ad-hoc Reporting features of Product A and Product B
IBM Analytics Engine
-
Ratings
Wolfram Mathematica
9.9
9 Ratings
24% above category average
Drill-down analysis
00 Ratings
9.98 Ratings
Formatting capabilities
00 Ratings
9.98 Ratings
Integration with R or other statistical packages
00 Ratings
9.97 Ratings
Report sharing and collaboration
00 Ratings
9.99 Ratings
Report Output and Scheduling
Comparison of Report Output and Scheduling features of Product A and Product B
IBM Analytics Engine
-
Ratings
Wolfram Mathematica
9.3
8 Ratings
13% above category average
Publish to Web
00 Ratings
9.97 Ratings
Publish to PDF
00 Ratings
9.08 Ratings
Report Versioning
00 Ratings
9.97 Ratings
Report Delivery Scheduling
00 Ratings
8.95 Ratings
Delivery to Remote Servers
00 Ratings
8.95 Ratings
Data Discovery and Visualization
Comparison of Data Discovery and Visualization features of Product A and Product B
Well suited for my big data related project or a static data set analysis especially for uploading huge dataset to the cluster.
But had some issues with connecting IoT real-time data and feeding to Power BI. It might be my understanding please take it as a mere comment rather than a suggestion.
We are the judgement that Wolfram Mathematica is despite many critics based on the paradigms selected a mark in the fields of the markets for computations of all kind. Wolfram Mathematica is even a choice in fields where other bolide systems reign most of the market. Wolfram Mathematica offers rich flexibility and internally standardizes the right methodologies for his user community. Wolfram Mathematica is not cheap and in need of a hard an long learner journey. That makes it weak in comparison with of-the-shelf-solution packages or even other programming languages. But for systematization of methods Wolfram Mathematica is far in front of almost all the other. Scientist and interested people are able to develop themself further and Wolfram Matheamatica users are a human variant for themself. The reach out for modern mathematics based science is deep and a unique unified framework makes the whole field of mathematics accessable comparable to the brain of Albert Einstein. The paradigms incorporated are the most efficients and consist in assembly on the market. The mathematics is covering and fullfills not just education requirements but the demands and needs of experts.
Mathematica is incompatible with other systems for mCAx and therefore the borders between the systems are hard to overcome. Wolfram Mathematica should be consider one of the more open systems because other code can be imported and run but on the export side it is rathe incompatible by design purposes. A better standard for all that might solve the crisis but there is none in sight. Selection of knowledge of what works will be in the future even more focussed and general system might be one the lossy side. Knowledge of esthetics of what will be in the highest demand in necessary and Wolfram is not a leader in this field of science. Mathematics leves from gathering problems from application fields and less from the glory of itself and the formalization of this.
It allows straightforward integration of analytic analysis of algebraic expressions and their numerical implemented.
Supports varying programmatic paradigms, so one can choose what best fits the problem or task: pure functions, procedural programming, list processing, and even (with a bit of setup) object-oriented programming.
The extensive and rich tools for graphical rendering make it very easy to not just get 2D and 3D renderings of final output, but also to do quick-and-dirty 2D and 3D rendering of intermediate results and/or debugging results.
Easier pricing and plug-and-play like you see with AWS and Azure, it would be nice from a budgeting and billing standpoint, as well as better support for the administration.
Bundling of the Cloud Object Storage should be included with the Analytics Engine.
The inability to add your own Hadoop stack components has made some transfers a little more complex.
Wolfram Mathematica is a nice software package. It has very nice features and easy to install and use in your machine. Besides this, there is a nice support from Wolfram. They come to the university frequently to give seminars in Mathematica. I think this is the best thing they are doing. That is very helpful for graduate and undergraduate students who are using Mathematica in their research.
We initially wanted to go with Google BigQuery, mainly for the name recognition. However, the pricing and support structure led us to seek alternatives, which pointed us to IBM. Apache Spark was also in the running, but here IBM's domination in the industry made the choice a no-brainer. As previously stated, the support received was not quite what we expected, but was adequate.
We have evaluated and are using in some cases the Python language in concert with the Jupyter notebook interface. For UI, we using libraries like React to create visually stunning visualizations of such models. Mathematica compares favorably to this alternative in terms of speed of development. Mathematica compares unfavorably to this alternative in terms of license costs.
This product has allowed us to gather analytics data across multiple platforms so we can view and analyze the data from different workflows, all in one place.
IBM Analytics has allowed us to scale on demand which allows us to capture more and more data, thus increasing our ROI.
The convenience of the ability to access and administer the product via multiple interfaces has allowed our administrators to ensure that the application is making a positive ROI for our business users and partners.