IBM Cloud Pak for Data (formerly IBM Cloud Private for Data) provides data management, data governance, and automated data discovery and classification.
N/A
Presto
Score 10.0 out of 10
N/A
Presto is an open source SQL query engine designed to run queries on data stored in Hadoop or in traditional databases.
Teradata supported development of Presto followed the acquisition of Hadapt and Revelytix.
IBM Cloud Pak for Data with Netezza is well suited for clients who require fast, economical analytics processing. It is not designed to be used as a transactional processing environment. For example, a large customer is using it during the point of sale process. That makes little sense in that business case. However, to take analysis to market faster, it excels well in that space.
Presto is for interactive simple queries, where Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like Vertica
Linking, embedding links and adding images is easy enough.
Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope).
Organizing & design is fairly simple with click & drag parameters.
Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem.
Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override.
UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc.
IBM Cloud Pak for Data takes the IBM Cognos solution and provides this on an enterprise cloud platform that can be extended to support better data integration and data science capabilities.
Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.