IBM Machine Learning for z/OS® brings AI to transactional applications on IBM zSystems. It can embed machine learning and deep learning models to deliver real-time insight, or inference every transaction with minimal impact to operational SLAs.
N/A
Streamlit
Score 8.1 out of 10
N/A
Streamlit is an open-source Python library designed to make it easy to build custom web-apps for machine learning and data science, from the company of the same name in San Francisco. Streamlit also hosts its community's Streamlit Component offered via API to help users get started.
IBM Watson Machine Learning is an AI-based scalable self-learning model for any type of business. It can be used to help any company automate repetitive tasks, predict future trends, and make data-driven decisions. I used it to predict stock prices based on certain variables. It works well, cost me nothing, and gives me the ability to create my own AI-based models that I can use for any purpose.
- Don't want to pay Tableau $1,000 / seat? Use Streamlit - Want fully custom views and navigation? Use Streamlit - Want access to Machine Learning and not just your dev team? Use Streamlit - Want to keep things internal and secure? Use Streamlit - Want your Data Science team to be able to crank out projects quickly? Use Streamlit - Sick of Jupyter Notebooks and Business Leaders not understanding them? Use Streamlit Our D.S. strategy has moved completely to delivering pages in Streamlit. I can hand an executive a Jupyter notebook and it'll get lost in translation. I can give them sign-in access to a page and they can answer all of their own "What-If?" questions! We've used Streamlit to productize our Data Science and Machine Learning capabilities.
Recent Security issues (they quickly released an update to combat this though...)
Requires a bit of HTML knowledge to really customize. If you're going quick, you don't need HTML though. Streamlit commands will pump your page out fast.
IBM had a hard time providing business level support. There were a lot of data scientists and technology experts but rarely a simple business person shows up. Also the way IBM operates IBM Consulting has competing priorities as compared to IBM Technology. This has resulted in a lot of confusion at the client's end.
We have been using Microsoft Azure as a machine learning tool. But the challenges remain the same. These are all tools that you need a robust analysis before a decision on the tool. Unfortunately, the technology company cannot make that determination due to lack of core business understanding. Without that the project is doomed.
I started using Streamlit when it first came out and thought it was really useful and powerful. A few years later and they've really hit their stride! The features / widgets / materials they provide have been well researched, well designed, and well implemented. I will take Streamlit to any future companies I go to as well as be a strong promoter wherever I'm currently at. It's free. It's easy to use. It is really powerful. Sure? You could go pay for a larger system but your Data Science team should be able to handle Streamlit easily. I'd argue a non-technical person spending a few weeks in python could pick up Streamlit really quickly.