IBM Watson Studio enables users to build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio enables users can operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. The vendor states the solution simplifies AI lifecycle management and accelerates time to value with an open, flexible multicloud architecture.
N/A
Mathematica
Score 7.0 out of 10
N/A
Wolfram's flagship product Mathematica is a modern technical computing application featuring a flexible symbolic coding language and a wide array of graphing and data visualization capabilities.
$1,520
per year
Pricing
IBM Watson Studio on Cloud Pak for Data
Wolfram Mathematica
Editions & Modules
No answers on this topic
Standard Cloud
$1,520
per year
Standard Desktop
$3,040
one-time fee
Standard Desktop & Cloud
$3,344
one-time fee
Mathematica Enterprise Edition
$8,150.00
one-time fee
Offerings
Pricing Offerings
IBM Watson Studio
Mathematica
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
Discounts available for students and educational institutions. The Network Edition reduce per-user license costs through shared deployment across any number of machines on a local-area network.
More Pricing Information
Community Pulse
IBM Watson Studio on Cloud Pak for Data
Wolfram Mathematica
Features
IBM Watson Studio on Cloud Pak for Data
Wolfram Mathematica
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
8.1
22 Ratings
3% below category average
Wolfram Mathematica
-
Ratings
Connect to Multiple Data Sources
8.022 Ratings
00 Ratings
Extend Existing Data Sources
8.022 Ratings
00 Ratings
Automatic Data Format Detection
10.021 Ratings
00 Ratings
MDM Integration
6.414 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
10.0
22 Ratings
18% above category average
Wolfram Mathematica
-
Ratings
Visualization
10.022 Ratings
00 Ratings
Interactive Data Analysis
10.022 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
9.5
22 Ratings
16% above category average
Wolfram Mathematica
-
Ratings
Interactive Data Cleaning and Enrichment
10.022 Ratings
00 Ratings
Data Transformations
10.021 Ratings
00 Ratings
Data Encryption
8.020 Ratings
00 Ratings
Built-in Processors
10.021 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
9.5
22 Ratings
12% above category average
Wolfram Mathematica
-
Ratings
Multiple Model Development Languages and Tools
10.021 Ratings
00 Ratings
Automated Machine Learning
10.022 Ratings
00 Ratings
Single platform for multiple model development
10.022 Ratings
00 Ratings
Self-Service Model Delivery
8.020 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
8.0
22 Ratings
6% below category average
Wolfram Mathematica
-
Ratings
Flexible Model Publishing Options
9.022 Ratings
00 Ratings
Security, Governance, and Cost Controls
7.022 Ratings
00 Ratings
BI Standard Reporting
Comparison of BI Standard Reporting features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Wolfram Mathematica
9.9
6 Ratings
20% above category average
Pixel Perfect reports
00 Ratings
9.84 Ratings
Customizable dashboards
00 Ratings
9.94 Ratings
Report Formatting Templates
00 Ratings
9.96 Ratings
Ad-hoc Reporting
Comparison of Ad-hoc Reporting features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Wolfram Mathematica
9.9
9 Ratings
24% above category average
Drill-down analysis
00 Ratings
9.98 Ratings
Formatting capabilities
00 Ratings
9.98 Ratings
Integration with R or other statistical packages
00 Ratings
9.97 Ratings
Report sharing and collaboration
00 Ratings
9.99 Ratings
Report Output and Scheduling
Comparison of Report Output and Scheduling features of Product A and Product B
IBM Watson Studio on Cloud Pak for Data
-
Ratings
Wolfram Mathematica
9.3
8 Ratings
13% above category average
Publish to Web
00 Ratings
9.97 Ratings
Publish to PDF
00 Ratings
9.08 Ratings
Report Versioning
00 Ratings
9.97 Ratings
Report Delivery Scheduling
00 Ratings
8.95 Ratings
Delivery to Remote Servers
00 Ratings
8.95 Ratings
Data Discovery and Visualization
Comparison of Data Discovery and Visualization features of Product A and Product B
It has a lot of features that are good for teams working on large-scale projects and continuously developing and reiterating their data project models. Really helpful when dealing with large data. It is a kind of one-stop solution for all data science tasks like visualization, cleaning, analyzing data, and developing models but small teams might find a lot of features unuseful.
We are the judgement that Wolfram Mathematica is despite many critics based on the paradigms selected a mark in the fields of the markets for computations of all kind. Wolfram Mathematica is even a choice in fields where other bolide systems reign most of the market. Wolfram Mathematica offers rich flexibility and internally standardizes the right methodologies for his user community. Wolfram Mathematica is not cheap and in need of a hard an long learner journey. That makes it weak in comparison with of-the-shelf-solution packages or even other programming languages. But for systematization of methods Wolfram Mathematica is far in front of almost all the other. Scientist and interested people are able to develop themself further and Wolfram Matheamatica users are a human variant for themself. The reach out for modern mathematics based science is deep and a unique unified framework makes the whole field of mathematics accessable comparable to the brain of Albert Einstein. The paradigms incorporated are the most efficients and consist in assembly on the market. The mathematics is covering and fullfills not just education requirements but the demands and needs of experts.
Mathematica is incompatible with other systems for mCAx and therefore the borders between the systems are hard to overcome. Wolfram Mathematica should be consider one of the more open systems because other code can be imported and run but on the export side it is rathe incompatible by design purposes. A better standard for all that might solve the crisis but there is none in sight. Selection of knowledge of what works will be in the future even more focussed and general system might be one the lossy side. Knowledge of esthetics of what will be in the highest demand in necessary and Wolfram is not a leader in this field of science. Mathematics leves from gathering problems from application fields and less from the glory of itself and the formalization of this.
It allows straightforward integration of analytic analysis of algebraic expressions and their numerical implemented.
Supports varying programmatic paradigms, so one can choose what best fits the problem or task: pure functions, procedural programming, list processing, and even (with a bit of setup) object-oriented programming.
The extensive and rich tools for graphical rendering make it very easy to not just get 2D and 3D renderings of final output, but also to do quick-and-dirty 2D and 3D rendering of intermediate results and/or debugging results.
I received answers mostly at once and got answered even further my question: they gave me interesting points of view and suggestion for deepening in the learning path
Wolfram Mathematica is a nice software package. It has very nice features and easy to install and use in your machine. Besides this, there is a nice support from Wolfram. They come to the university frequently to give seminars in Mathematica. I think this is the best thing they are doing. That is very helpful for graduate and undergraduate students who are using Mathematica in their research.
The main reason I personally changed over from Azure ML Studio is because it lacked any support for significant custom modelling with packages and services such as TensorFlow, scikit-learn, Microsoft Cognitive Toolkit and Spark ML. IBM Watson Studio provides these services and does so in a well integrated and easy to use fashion making it a preferable service over the other services that I have personally used.
We have evaluated and are using in some cases the Python language in concert with the Jupyter notebook interface. For UI, we using libraries like React to create visually stunning visualizations of such models. Mathematica compares favorably to this alternative in terms of speed of development. Mathematica compares unfavorably to this alternative in terms of license costs.