Watsonx.data is presented as an open, hybrid and governed data store that makes it possible for enterprises to scale analytics and AI with a fit-for-purpose data store, built on an open lakehouse architecture, supported by querying, governance and open data formats to access and share data.
N/A
Teradata Vantage
Score 8.4 out of 10
N/A
Teradata Vantage is presented as a modern analytics cloud platform that unifies everything—data lakes, data warehouses, analytics, and new data sources and types. Supports hybrid multi-cloud environments and priced for flexibility, Vantage delivers unlimited intelligence to build the future of business.
Users can deploy Vantage on public clouds (such as AWS, Azure, and GCP), hybrid multi-cloud environments, on-premises with Teradata IntelliFlex, or on commodity hardware with VMware.
IBM watsonx.data is well suited for use cases were you have to combine various data sources to build a lakehouse. It provides a secure framework to gather data and provide access to it to build ML/AI models. It allows users to focus on prompts and business logic than spend time on data engineering.
Teradata Vantage is well suited for large scale ETL pipelines like the ones we developed for anti money laundering risk matrices. It handles heavy joins, aggregations, and transformations on transactional data efficiently. We generate alert variables, adjust for inflation, and monitor establishments monthly with it, all integrated with Python and Control-M for a centralised automation across the company. For less appropriate, I would say that heavy resource demands might slow down experimentation for iterative work.
Integration complexity with Security Tools while watsonx.Data is well-suited for native tools, but integration with third-party security tools requires custom connectors or manual ETL pipelines. which leads to an increase in setup time.
Teradata is an excellent option but only for a massive amount of data warehousing or analysis. If your data is not that big then it could be a misfit for your company and cost you a lot. The cost associated is quite extensive as compared to some other alternative RDBMS systems available in the market.
Migration of data from Teradata to some other RDBMS systems is quite painful as the transition is not that smooth and you need to follow many steps and even if one of them fails. You need to start from the beginning almost.
Last but not least the UI is pretty outdated and needs a revamp. Though it is simple, it needs to be presented in a much better way and more advanced options need to bee presented on the front page itself.
Teradata is a mature RDBMS system that expands its functionality towards the current cloud capabilities like object storage and flexible compute scale.
I can give it 10/10 due to its impact in data analysis management. This is the right software for driving business insights and enhancing effective decision making. The infrastructure has the formal tools for preparing data before using it to make critical decisions. The NLP has enhanced standard analysis of unstructured data from social media websites.
Teradata Vantage allows us to create a scalable infrastructure to support our strategic initiatives. The dedicated compute power ensures reliable performance with isolated workloads and dedicated resources, optimizing workflows for faster, more efficient data transfers. The compute clusters support ETL processes and OSF’s developers and data science team with the flexibility to create self-service analytics, to spin up/down at any time, driving better performance and minimizing costs.
We have meetings at the beginning with the technical team to explain our requirements to them and they were really putting in a lot of effort to come up with a solution which will address all our needs. They implemented the software and also trained a few of our resources on the same too. We can get in touch with them now as well whenever we run into a roadblock but it's very less now.
Pinecone and IBM watsonx.data (Milvus in our case) both work great as a full-managed cloud-based vector database. We selected IBM watsonx.data because it integrates well with watson.ai and is a little more beginner friendly than Pinecone, but I think both are great anyway.
Teradata is way ahead of its competitor because of its unique features of ensuring data privacy and data never gets corrupted even in worst case scenario. In most cases, the data corruption is a major issue if left unused and it leads to important data being wiped off which in ideal case should be stored for 3 years
Moving to Teradata in the Cloud-enabled a level of agility that previously didn't exist in the organization. It also enabled a level of analytic competency that was not achievable using other options on the aggressive timeline that was required. We didn't want to settle for reinventing a wheel when we had a super tuned performance capable beast readily available in Teradata. Teradata lets us focus on our business rather than spending money and effort trying to design software or database foundations features on an open source or lower performance platform.