Likelihood to Recommend Presto is for interactive simple queries, where
Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like
Vertica Read full review Ideal for daily standard ETL use cases whether the data is sourced from / transferred to the native connectors (like SQL Server) or FTP. Best if the company uses MS suite of tools. There are better options in the market for chaining tasks where you want a custom flow of executions depending on the outcome of each process or if you want advanced functionality like API connections, etc.
Read full review Pros Linking, embedding links and adding images is easy enough. Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope). Organizing & design is fairly simple with click & drag parameters. Read full review Ease of use - can be used with no prior experience in a relatively short amount of time. Flexibility - provides multiple means of accomplishing tasks to be able to support virtually any scenario. Performance - performs well with default configurations but allows the user to choose a multitude of options that can enhance performance. Resilient - supports the configuration of error handling to prevent and identify breakages. Complete suite of configurable tools. Read full review Cons Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem. Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override. UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc. Read full review SSIS has been a bit neglected by Microsoft and new features are slow in coming. When importing data from flat files and Excel workbooks, changes in the data structure will cause the extracts to fail. Workarounds do exist but are not easily implemented. If your source data structure does not change or rarely changes, this negative is relatively insignificant. While add-on third-party SSIS tools exist, there are only a small number of vendors actively supporting SSIS and license fees for production server use can be significant especially in highly-scaled environments. Read full review Likelihood to Renew Some features should be revised or improved, some tools (using it with Visual Studio) of the toolbox should be less schematic and somewhat more flexible. Using for example, the CSV data import is still very old-fashioned and if the data format changes it requires a bit of manual labor to accept the new data structure
Read full review Usability SQL Server Integration Services is a relatively nice tool but is simply not the ETL for a global, large-scale organization. With developing requirements such as NoSQL data, cloud-based tools, and extraordinarily large databases, SSIS is no longer our tool of choice.
Read full review Performance Raw performance is great. At times, depending on the machine you are using for development, the IDE can have issues. Deploying projects is very easy and the tool set they give you to monitor jobs out of the box is decent. If you do very much with it you will have to write into your projects performance tracking though.
Read full review Support Rating The support, when necessary, is excellent. But beyond that, it is very rarely necessary because the user community is so large, vibrant and knowledgable, a simple Google query or forum question can answer almost everything you want to know. You can also get prewritten script tasks with a variety of functionality that saves a lot of time.
Read full review Implementation Rating The implementation may be different in each case, it is important to properly analyze all the existing infrastructure to understand the kind of work needed, the type of software used and the compatibility between these, the features that you want to exploit, to understand what is possible and which ones require integration with third-party tools
Read full review Alternatives Considered Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.
Read full review I had nothing to do with the choice or install. I assume it was made because it's easy to integrate with our SQL Server environment and free. I'm not sure of any other enterprise level solution that would solve this problem, but I would likely have approached it with traditional scripting. Comparably free, but my own familiarity with trad scripts would be my final deciding factor. Perhaps with some further training on SSIS I would have a different answer.
Read full review Return on Investment Presto has helped scale Uber's interactive data needs. We have migrated a lot out of proprietary tech like Vertica. Presto has helped build data driven applications on its stack than maintain a separate online/offline stack. Presto has helped us build data exploration tools by leveraging it's power of interactive and is immensely valuable for data scientists. Read full review Data integrity across various products allows unify certain processes inside the organization and save funds by reducing human labour factor. Automated data unification allows us plan our inputs better and reduce over-warehousing by overbuying The employee number, responsible for data management was reduced from 4 to 1 person Read full review ScreenShots