MongoDB vs. Amazon DynamoDB:• MongoDB requires more human management than DynamoDB, which is a fully managed service.• DynamoDB's scalability is automatic, whereas MongoDB's horizontal scaling may require more work.• When compared to DynamoDB, MongoDB offers more extensive data …
DynamoDB's scalability is more automated and effortless, making it easier to handle rapid growth. Other tools require more manual configuration while DynamoDB simplifies database administration. Also, DynamoDB provides strong consistency while other tools like MongoDB and Apache…
AWS handles hardware provisioning, data recovery, fault tolerance, patching, and database upgrades for DynamoDB since it is a fully managed database service. Businesses can then concentrate on other aspects of their operations, including product development or customer service, …
DynamoDB offers strong consistency, more fine-grained control over read and write capacities, and integrates seamlessly with other AWS services. DynamoDB is designed for horizontal scalability and high throughput, making it a better choice for applications with rapidly changing …
The automation is much more subtle and it performs way better for internet-scale applications. No matter the number of connections, the performance doesn't dip even a bit.
Amazon DynamoDB is a blind pick if you are already using AWS services suite and your data is also present on the Amazon cloud. If you are not sure of the type of data that you are going to get or you know that is won't always be structured data, then it is also the right choice.
The main reason for sticking to DynamoDB is that its part of the AWS suite and since its a managed solution, so we do not have to worry about scalability and reliability. There are some advantages and disadvantages for using DynamoDB and the decision ultimately depends on your …
When you compare database systems it's easy to have an apples to apples comparison. However, when comparing two No-SQL systems it isn't as easy because they are built with different purposes in mind. DynamoDB has been easier to implement because it comes as a Service from …
We ended up selecting DynamoDB compared to similar products simply because we host on AWS. To use any other NoSQL solution would require more work in the long run due to having to maintain the EC2 instance, manage updates to the operating system and whatever NoSQL system that …
While evaluating Cassandra, PostgreSQL, MongoDB and DynamoDB we found Cassandra and DynamoDB being well suited for us. At the same time we didn't have the luxury of large team or devops so it came down to Amazon DynamoDB. As a small team we are glad to go forward with this …
DynamoDB is fully managed which is a great plus over MongoDB. The feature set is not as strong on MongoDB's for document databases, but it the managed aspect is highly compelling. Similarly for Cassandra, DynamoDB is managed. DynamoDB scales much better than CouchDB.
Four years ago, I needed to choose a web-scale database. Having used relational databases for years (PostgreSQL is my favorite), I needed something that could perform well at scale with no downtime. I considered VoltDB for its in-memory speed, but it's limited in scale. I …
DynamoDB is good and is also a truly global database as a service on AWS. However, if your organization is not using AWS, then Cassandra will provide a highly scalable and tuneable, consistent database. Cassandra is also fault-tolerant and good for replication across multiple …
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for …
Apache Cassandra has the best of both worlds, it is a Java based NoSQL, linearly scalable, best in class
tunable performance across different workloads, fault tolerant, distributed, masterless, time series database. We have used both Apache HBase and MongoDB for some use cases …
It’s great for server less and real-time applications. It would be great for gaming and mobile apps. However, if you need relational database and have fixed budget, do not use it. While budget can be managed, you need to be careful. Also this is not a tool for storing big data, there are other wide-column database types you could use for it ins the ad
Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit! http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services.
Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table.
Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds.
Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history.
Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications.
Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis.
There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it.
It's core to our business, we couldn't survive without it. We use it to drive everything from FTP logins to processing stories and delivering them to clients. It's reliable and easy to query from all of our pipeline services. Integration with things like AWS Lambda makes it easy to trigger events and run code whenever something changes in the database.
I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
Functionally, DynamoDB has the features needed to use it. The interface is not as easy to use, which impacts its usability. Being familiar with AWS in general is helpful in understanding the interface, however it would be better if the interface more closely aligned with traditional tools for managing datastores.
It works very well across all the regions and response time is also very quick due to AWS's internal data transfer. Plus if your product requires HIPPA or some other regulations needs to be followed, you can easily replicate the DB into multiple regions and they manage all by it's own.
The only thing that can be compared to DynamoDB from the selected services can be Aurora. It is just that we use Aurora for High-Performance requirements as it can be 6 times faster than normal RDS DB. Both of them have served as well in the required scenario and we are very happy with most of the AWS services.
We evaluated MongoDB also, but don't like the single point failure possibility. The HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
I have taken one point away due to its size limits. In case the application requires queries, it becomes really complicated to read and write data. When it comes to extremely large data sets such as the case in my company, a third-party logistics company, where huge amount of data is generated on a daily basis, even though the scalability is good, it becomes difficult to manage all the data due to limits.
Some developers see DynamoDB and try to fit problems to it, instead of picking the best solution for a given problem. This is true of any newer tool that people are trying to adopt.
It has allowed us to add more scalability to some of our systems.
As with any new technology there was a ramp up/rework phase as we learned best practices.
I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for.
Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level.