Amazon DynamoDB is a cloud-native, NoSQL, serverless database service.
$0
capacity unit per hour
HBase
Score 7.3 out of 10
N/A
The Apache HBase project's goal is the hosting of very large tables -- billions of rows X millions of columns -- atop clusters of commodity hardware. Apache HBase is an open-source, distributed, versioned, non-relational database modeled after Google's Bigtable.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work …
It’s great for server less and real-time applications. It would be great for gaming and mobile apps. However, if you need relational database and have fixed budget, do not use it. While budget can be managed, you need to be careful. Also this is not a tool for storing big data, there are other wide-column database types you could use for it ins the ad
Hbase is well suited for large organizations with millions of operations performing on tables, real-time lookup of records in a table, range queries, random reads and writes and online analytics operations. Hbase cannot be replaced for traditional databases as it cannot support all the features, CPU and memory intensive. Observed increased latency when using with MapReduce job joins.
Stored procedures functionality is not available so it should be implemented.
HBase is CPU and Memory intensive with large sequential input or output access while as Map Reduce jobs are primarily input or output bound with fixed memory. HBase integrated with Map-reduce jobs will result in random latencies.
It's core to our business, we couldn't survive without it. We use it to drive everything from FTP logins to processing stories and delivering them to clients. It's reliable and easy to query from all of our pipeline services. Integration with things like AWS Lambda makes it easy to trigger events and run code whenever something changes in the database.
There's really not anything else out there that I've seen comparable for my use cases. HBase has never proven me wrong. Some companies align their whole business on HBase and are moving all of their infrastructure from other database engines to HBase. It's also open source and has a very collaborative community.
Functionally, DynamoDB has the features needed to use it. The interface is not as easy to use, which impacts its usability. Being familiar with AWS in general is helpful in understanding the interface, however it would be better if the interface more closely aligned with traditional tools for managing datastores.
It works very well across all the regions and response time is also very quick due to AWS's internal data transfer. Plus if your product requires HIPPA or some other regulations needs to be followed, you can easily replicate the DB into multiple regions and they manage all by it's own.
The only thing that can be compared to DynamoDB from the selected services can be Aurora. It is just that we use Aurora for High-Performance requirements as it can be 6 times faster than normal RDS DB. Both of them have served as well in the required scenario and we are very happy with most of the AWS services.
Cassandra os great for writes. But with large datasets, depending, not as great as HBASE. Cassandra does support parquet now. HBase still performance issues. Cassandra has use cases of being used as time series. HBase, it fails miserably. GeoSpatial data, Hbase does work to an extent. HA between the two are almost the same.
I have taken one point away due to its size limits. In case the application requires queries, it becomes really complicated to read and write data. When it comes to extremely large data sets such as the case in my company, a third-party logistics company, where huge amount of data is generated on a daily basis, even though the scalability is good, it becomes difficult to manage all the data due to limits.
Some developers see DynamoDB and try to fit problems to it, instead of picking the best solution for a given problem. This is true of any newer tool that people are trying to adopt.
It has allowed us to add more scalability to some of our systems.
As with any new technology there was a ramp up/rework phase as we learned best practices.
As Hbase is a noSql database, here we don't have transaction support and we cannot do many operations on the data.
Not having the feature of primary or a composite primary key is an issue as the architecture to be defined cannot be the same legacy type. Also the transaction concept is not applicable here.
The way data is printed on console is not so user-friendly. So we had to use some abstraction over HBase (eg apache phoenix) which means there is one new component to handle.