Amazon Elastic Block Store (EBS) from AWS is designed for application workloads that benefit from fine tuning for performance, cost and capacity. Typical use cases include Big Data analytics engines (like the Hadoop/HDFS ecosystem and Amazon EMR clusters), relational and NoSQL databases (like Microsoft SQL Server and MySQL or Cassandra and MongoDB), stream and log processing applications (like Kafka and Splunk), and data warehousing applications (like Vertica and Teradata).
N/A
AWS Lambda
Score 8.4 out of 10
N/A
AWS Lambda is a serverless computing platform that lets users run code without provisioning or managing servers. With Lambda, users can run code for virtually any type of app or backend service—all with zero administration. It takes of requirements to run and scale code with high availability.
$NaN
Per 1 ms
Pricing
Amazon Elastic Block Store (EBS)
AWS Lambda
Editions & Modules
No answers on this topic
128 MB
$0.0000000021
Per 1 ms
1024 MB
$0.0000000167
Per 1 ms
10240 MB
$0.0000001667
Per 1 ms
Offerings
Pricing Offerings
Amazon Elastic Block Store (EBS)
AWS Lambda
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Amazon Elastic Block Store (EBS)
AWS Lambda
Considered Both Products
Amazon Elastic Block Store (EBS)
No answer on this topic
AWS Lambda
Verified User
Analyst
Chose AWS Lambda
Each service has its purpose. With EC2 you can provision servers for customers and internal projects. With EBs you can optimize what you need in performance with what you can afford. With AWS Lambda you can integrate several of these tools to work together or acomplish …
It provides the optimized storage performance and cost for your workload and these options really work with SSD-backed storage and it improves the database performance. Keeping backups of your EC2 resources, including EBS volumes is a little bit tricky and its takes some more time and increase through put is also a tiring job to do.
Lambda excels at event-driven, short-lived tasks, such as processing files or building simple APIs. However, it's less ideal for long-running, computationally intensive, or applications that rely on carrying the state between jobs. Cold starts and constant load can easily balloon the costs.
Developing test cases for Lambda functions can be difficult. For functions that require some sort of input it can be tough to develop the proper payload and event for a test.
For the uninitiated, deploying functions with Infrastructure as Code tools can be a challenging undertaking.
Logging the output of a function feels disjointed from running the function in the console. A tighter integration with operational logging would be appreciated, perhaps being able to view function logs from the Lambda console instead of having to navigate over to CloudWatch.
Sometimes its difficult to determine the correct permissions needed for Lambda execution from other AWS services.
Amazon EBS is a great tool and fairly easy to use as long as you are familiar with the Amazon Web Service ecosystem. It allows a great way for you to move storage around easily and allows you to quickly provision storage as needed based on the business requirement. For us, it's easy to move between our EC2 images that had been linked with EBS storage between these Amazon accounts.
I give it a seven is usability because it's AWS. Their UI's are always clunkier than the competition and their documentation is rather cumbersome. There's SO MUCH to dig through and it's a gamble if you actually end up finding the corresponding info if it will actually help. Like I said before, going to google with a specific problem is likely a better route because AWS is quite ubiquitous and chances are you're not the first to encounter the problem. That being said, using SAM (Serverless application model) and it's SAM Local environment makes running local instances of your Lambdas in dev environments painless and quite fun. Using Nodejs + Lambda + SAM Local + VS Code debugger = AWESOME.
The support for Amazon Elastic Block Store is great as long as you can articulate your needs. Like most tools, there may be some back and forth before you find a support person that is knowledgable in the tool and can provide you with necessary insights.
Amazon consistently provides comprehensive and easy-to-parse documentation of all AWS features and services. Most development team members find what they need with a quick internet search of the AWS documentation available online. If you need advanced support, though, you might need to engage an AWS engineer, and that could be an unexpected (or unwelcome) expense.
So far I have only used Amazon Elastic Block Store (EBS) and Azure but comparatively [I] prefer AWS elastic Block store as its having more advantages than Azure and I found it quite satisfactory and it helped a lot for information storage. We are not looking for any other hosting provider at this time.
AWS Lambda is good for short running functions, and ideally in response to events within AWS. Google App Engine is a more robust environment which can have complex code running for long periods of time, and across more than one instance of hardware. Google App Engine allows for both front-end and back-end infrastructure, while AWS Lambda is only for small back-end functions
When your application needs high IOPS storage, this is a great solution that will keep your business functioning.
Without Amazon Elastic Block Store you could try spreading your data across several standard drives, but that introduces complexity and still has IOPS limits.
Positive - Only paying for when code is run, unlike virtual machines where you pay always regardless of processing power usage.
Positive - Scalability and accommodating larger amounts of demand is much cheaper. Instead of scaling up virtual machines and increasing the prices you pay for that, you are just increasing the number of times your lambda function is run.
Negative - Debugging/troubleshooting, and developing for lambda functions take a bit more time to get used to, and migrating code from virtual machines and normal processes to Lambda functions can take a bit of time.