Amazon S3 Glacier vs. Google BigQuery

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Amazon S3 Glacier
Score 9.1 out of 10
N/A
The Amazon S3 Glacier storage classes are purpose-built for data archiving, providing a low cost archive storage in the cloud. According to AWS, S3 Glacier storage classes provide virtually unlimited scalability and are designed for 99.999999999% (11 nines) of data durability, and they provide fast access to archive data and low cost.
$0
Per GB Per Month
Google BigQuery
Score 8.7 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Pricing
Amazon S3 GlacierGoogle BigQuery
Editions & Modules
Bulk Retrieval Pricing
$0.0025
Per GB Per Month
Storage Pricing
$0.004
Per GB Per Month
Retrieval Pricing
$0.01
Per GB Per Month
Expedited Retrieval Pricing
$0.03
Per GB Per Month
Standard edition
$0.04 / slot hour
Enterprise edition
$0.06 / slot hour
Enterprise Plus edition
$0.10 / slot hour
Offerings
Pricing Offerings
Amazon S3 GlacierGoogle BigQuery
Free Trial
YesYes
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Amazon S3 GlacierGoogle BigQuery
Features
Amazon S3 GlacierGoogle BigQuery
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
Amazon S3 Glacier
-
Ratings
Google BigQuery
8.4
79 Ratings
2% below category average
Automatic software patching00 Ratings8.017 Ratings
Database scalability00 Ratings9.078 Ratings
Automated backups00 Ratings8.524 Ratings
Database security provisions00 Ratings8.772 Ratings
Monitoring and metrics00 Ratings8.274 Ratings
Automatic host deployment00 Ratings8.013 Ratings
Best Alternatives
Amazon S3 GlacierGoogle BigQuery
Small Businesses
Cove Data Protection
Cove Data Protection
Score 9.7 out of 10
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Medium-sized Companies
Cove Data Protection
Cove Data Protection
Score 9.7 out of 10
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Enterprises
Microsoft Exchange
Microsoft Exchange
Score 8.7 out of 10
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Amazon S3 GlacierGoogle BigQuery
Likelihood to Recommend
9.0
(8 ratings)
8.8
(78 ratings)
Likelihood to Renew
-
(0 ratings)
8.0
(5 ratings)
Usability
6.0
(1 ratings)
7.2
(6 ratings)
Availability
-
(0 ratings)
7.3
(1 ratings)
Performance
-
(0 ratings)
6.4
(1 ratings)
Support Rating
-
(0 ratings)
5.8
(11 ratings)
Configurability
-
(0 ratings)
6.4
(1 ratings)
Contract Terms and Pricing Model
-
(0 ratings)
10.0
(1 ratings)
Ease of integration
-
(0 ratings)
7.3
(1 ratings)
Product Scalability
-
(0 ratings)
7.3
(1 ratings)
Professional Services
-
(0 ratings)
8.2
(2 ratings)
User Testimonials
Amazon S3 GlacierGoogle BigQuery
Likelihood to Recommend
Amazon AWS
If your organization has a lot of archival data that it needs to be backed up for safekeeping, where it won't be touched except in a dire emergency, Amazon Glacier is perfect. In our case, we had a client that generates many TB of video and photo data at annual events and wanted to retain ALL of it, pre- and post- edit for potential use in a future museum. Using the Snowball device, we were able to move hundreds of TB of existing media data that was previously housed on multiple Thunderbolt drives, external RAIDs, etc, in an organized manner, to Amazon Glacier. Then, we were able to setup CloudBerry Backup on their production computers to continually backup any new media that they generated during their annual events.
Read full review
Google
Event-based data can be captured seamlessly from our data layers (and exported to Google BigQuery). When events like page-views, clicks, add-to-cart are tracked, Google BigQuery can help efficiently with running queries to observe patterns in user behaviour. That intermediate step of trying to "untangle" event data is resolved by Google BigQuery. A scenario where it could possibly be less appropriate is when analysing "granular" details (like small changes to a database happening very frequently).
Read full review
Pros
Amazon AWS
  • Cheap storage of backup data.
  • Can be used as a part of the entire suite of tools from Amazon, without requiring you to leave the familiar stack.
Read full review
Google
  • Realtime integration with Google Sheets.
  • GSheet data can be linked to a BigQuery table and the data in that sheet is ingested in realtime into BigQuery. It's a live 'sync' which means it supports insertions, deletions, and alterations. The only limitation here is the schema'; this remains static once the table is created.
  • Seamless integration with other GCP products.
  • A simple pipeline might look like this:-
  • GForms -> GSheets -> BigQuery -> Looker
  • It all links up really well and with ease.
  • One instance holds many projects.
  • Separating data into datamarts or datameshes is really easy in BigQuery, since one BigQuery instance can hold multiple projects; which are isolated collections of datasets.
Read full review
Cons
Amazon AWS
  • Sometime due to slow drives there are operation failure noticed by us in testing
  • Cost of restoring data is high and if you have regular restoring them it is not good option and slow as well.
  • While we were setting up the system we took some support from AWS and in many cases their answers were not up to the mark.
Read full review
Google
  • Please expand the availability of documentation, tutorials, and community forums to provide developers with comprehensive support and guidance on using Google BigQuery effectively for their projects.
  • If possible, simplify the pricing model and provide clearer cost breakdowns to help users understand and plan for expenses when using Google BigQuery. Also, some cost reduction is welcome.
  • It still misses the process of importing data into Google BigQuery. Probably, by improving compatibility with different data formats and sources and reducing the complexity of data ingestion workflows, it can be made to work.
Read full review
Likelihood to Renew
Amazon AWS
No answers on this topic
Google
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review
Usability
Amazon AWS
It is difficult to delete the data as you have to wait for inventory and then bucket modification has to expire.
Read full review
Google
I think overall it is easy to use. I haven't done anything from the development side but an more of an end user of reporting tables built in Google BigQuery. I connect data visualization tools like Tableau or Power BI to the BigQuery reporting tables to analyze trends and create complex dashboards.
Read full review
Reliability and Availability
Amazon AWS
No answers on this topic
Google
I have never had any significant issues with Google Big Query. It always seems to be up and running properly when I need it. I cannot recall any times where I received any kind of application errors or unplanned outages. If there were any they were resolved quickly by my IT team so I didn't notice them.
Read full review
Performance
Amazon AWS
No answers on this topic
Google
I think Google Big Query's performance is in the acceptable range. Sometimes larger datasets are somewhat sluggish to load but for most of our applications it performs at a reasonable speed. We do have some reports that include a lot of complex calculations and others that run on granular store level data that so sometimes take a bit longer to load which can be frustrating.
Read full review
Support Rating
Amazon AWS
No answers on this topic
Google
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review
Alternatives Considered
Amazon AWS
Since the rest of our infrastructure is in Amazon AWS, coding for sending data to Glacier just makes sense. The others are great as well, for their specific needs and uses, but having *another* third-party software to manage, be billed for, and learn/utilize can be costly in money and time.
Read full review
Google
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review
Contract Terms and Pricing Model
Amazon AWS
No answers on this topic
Google
None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review
Scalability
Amazon AWS
No answers on this topic
Google
We have continued to expand out use of Google Big Query over the years. I'd say its flexibility and scalability is actually quite good. It also integrates well with other tools like Tableau and Power BI. It has served the needs of multiple data sources across multiple departments within my company.
Read full review
Professional Services
Amazon AWS
No answers on this topic
Google
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review
Return on Investment
Amazon AWS
  • We seldom need to access our data in Glacier; this means that it is a fraction of the cost of S3, including the infrequent-access storage class.
  • Transitioning data to Glacier is managed by AWS. We don't need our engineers to build or maintain log pipelines.
  • Configuring lifecycle policies for S3 and Glacier is simple; it takes our engineers very little time, and there is little risk of errant configuration.
Read full review
Google
  • Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
  • We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
  • Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Read full review
ScreenShots

Google BigQuery Screenshots

Screenshot of Migrating data warehouses to BigQuery - Features a streamlined migration path from Netezza, Oracle, Redshift, Teradata, or Snowflake to BigQuery using the fully managed BigQuery Migration Service.Screenshot of bringing any data into BigQuery - Data files can be uploaded from local sources, Google Drive, or Cloud Storage buckets, using BigQuery Data Transfer Service (DTS), Cloud Data Fusion plugins, by replicating data from relational databases with Datastream for BigQuery, or by leveraging Google's data integration partnerships.Screenshot of generative AI use cases with BigQuery and Gemini models - Data pipelines that blend structured data, unstructured data and generative AI models together can be built to create a new class of analytical applications. BigQuery integrates with Gemini 1.0 Pro using Vertex AI. The Gemini 1.0 Pro model is designed for higher input/output scale and better result quality across a wide range of tasks like text summarization and sentiment analysis. It can be accessed using simple SQL statements or BigQuery’s embedded DataFrame API from right inside the BigQuery console.Screenshot of insights derived from images, documents, and audio files, combined with structured data - Unstructured data represents a large portion of untapped enterprise data. However, it can be challenging to interpret, making it difficult to extract meaningful insights from it. Leveraging the power of BigLake, users can derive insights from images, documents, and audio files using a broad range of AI models including Vertex AI’s vision, document processing, and speech-to-text APIs, open-source TensorFlow Hub models, or custom models.Screenshot of event-driven analysis - Built-in streaming capabilities automatically ingest streaming data and make it immediately available to query. This allows users to make business decisions based on the freshest data. Or Dataflow can be used to enable simplified streaming data pipelines.Screenshot of predicting business outcomes AI/ML - Predictive analytics can be used to streamline operations, boost revenue, and mitigate risk. BigQuery ML democratizes the use of ML by empowering data analysts to build and run models using existing business intelligence tools and spreadsheets.