Amazon TensorFlow enables developers to quickly and easily get started with deep learning in the cloud.
N/A
IBM Watson Studio
Score 9.9 out of 10
N/A
IBM Watson Studio enables users to build, run and manage AI models, and optimize decisions at scale across any cloud. IBM Watson Studio enables users can operationalize AI anywhere as part of IBM Cloud Pak® for Data, the IBM data and AI platform. The vendor states the solution simplifies AI lifecycle management and accelerates time to value with an open, flexible multicloud architecture.
Microsoft Azure is better than Amazon Tensor Flow because it provides easier and pre-built capabilities such as Anomaly Detection, Recommendation, and Ranking.
AWS is better than IBM Watson ML Studio because it has direct and prebuilt clustering capabilities
A well-suited scenario for using AWS Tensor Flow is when having a project with a geographically dispersed team, a client overseas and large data to use for training. AWS Tensor Flow is less appropriate when working for clients in regions where it hasn't been allowed yet for use. Since smaller clients are in regions where AWS Tensor Flow hasn't been allowed for use, and those clients traditionally don't have enough hardware, this situation deters a wider use of the tool.
It has a lot of features that are good for teams working on large-scale projects and continuously developing and reiterating their data project models. Really helpful when dealing with large data. It is a kind of one-stop solution for all data science tasks like visualization, cleaning, analyzing data, and developing models but small teams might find a lot of features unuseful.
Amazon Elastic Compute Cloud (EC2) allows resizable compute capacity in the cloud, providing the necessary elasticity to provide services for both, small and medium-sized businesses.
Tensor Flow allows us to train our models much faster than in our on-premise equipment.
Most of the pre-trained models are easy to adapt to our clients' needs.
SageMaker isn't available in all regions. This is complicated for some clients overseas.
For larger instances, when using a GPU, it takes a while to talk to a customer service representative to ask for a limit increase. Given this, it's recommendable to ask in advance for a limit increase in more expensive and larger cases; otherwise, SageMaker will set the limit to zero by default.
Since the data has to be stored in S3 and copied to training, it doesn't allow to test and debug locally. Therefore, we have to wait a lot to check everything after every trail.
I received answers mostly at once and got answered even further my question: they gave me interesting points of view and suggestion for deepening in the learning path
Microsoft Azure is better than Amazon Tensor Flow because it provides easier and pre-built capabilities such as Anomaly Detection, Recommendation, and Ranking. AWS is better than IBM Watson ML Studio because it has direct and prebuilt clustering capabilities AWS, like IBM Watson ML Studio, has powerful built-in algorithms, providing a stronger platform when comparing it with MS Azure ML Services and Google ML Engine.
The main reason I personally changed over from Azure ML Studio is because it lacked any support for significant custom modelling with packages and services such as TensorFlow, scikit-learn, Microsoft Cognitive Toolkit and Spark ML. IBM Watson Studio provides these services and does so in a well integrated and easy to use fashion making it a preferable service over the other services that I have personally used.