Anaconda provides access to the foundational open-source Python and R packages used in modern AI, data science, and machine learning. These enterprise-grade solutions enable corporate, research, and academic institutions around the world to harness open-source for competitive advantage and research. Anaconda also provides enterprise-grade security to open-source software through the Premium Repository.
$0
per month
Microsoft R Open / Revolution R Enterprise
Score 8.9 out of 10
N/A
Microsoft R Open and Revolution R Enterprise are big data R distribution for servers, Hadoop clusters, and data warehouses. Microsoft acquired original developer Revolution Analytics in 2016.
Microsoft R is available in two editions: Microsoft R Open (formerly Revolution R Open) and Revolution R Enterprise.
I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
If you are a MS shop specifically, or have more generic data requirement needs from Microsoft sourced data this will work well. If you have a lot of disparate data across a number of unique platforms/cloud systems/3rd party hosted data warehouses then this product will have issues or a lack of documentation on the net. Performance-wise this product is equal to other R platforms out there.
Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc.
Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily.
Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money.
I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made.
It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
In general, Revolution Analytics brings a lot of value to the organization. The renewal decision would be based on return on investment in terms of quantified actionable insights that are getting generated against the cost of the product. Additionally, market brand of the tool and reputation risk in terms of possible acquisition and its impact to overall organizational analytic strategy would be considered as well.
I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
It is good, easy to use, improvements are being made to the product and more info being shared in the community. It just needs some more time to become more integrated to other platforms and tools/data out there.
Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
Generally support comes through the forums and user generated channels which are helpful, easy to access, quickly turned around and provided by knowledgeable users. However the support channels are not employees and the channels are often used as a way to learn quick difficult elements of R. Better design, users interface and tutorial options would alleviate the need for this sort of interaction.
I have experience using RStudio oustide of Anaconda. RStudio can be installed via anaconda, but I like to use RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both RStudio and Anaconda, I like installing R packages via RStudio. However, for anything python-related, Anaconda is my go to!
The two are different products for different purposes. But for someone who has little or no experience in R programming, Power BI would be better for starting with. Having said that, Microsoft R is built on R, thus allowing for customization of complex calculations not typically available otherwise.
It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over.
By having an easy access and immediate use of libraries, developing times has decreased more than 20 %
There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda.