Apache Hadoop vs. MongoDB

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Hadoop
Score 7.0 out of 10
N/A
Hadoop is an open source software from Apache, supporting distributed processing and data storage. Hadoop is popular for its scalability, reliability, and functionality available across commoditized hardware.N/A
MongoDB
Score 8.0 out of 10
N/A
MongoDB is an open source document-oriented database system. It is part of the NoSQL family of database systems. Instead of storing data in tables as is done in a "classical" relational database, MongoDB stores structured data as JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain types of applications easier and faster.
$0.10
million reads
Pricing
Apache HadoopMongoDB
Editions & Modules
No answers on this topic
Shared
$0
per month
Serverless
$0.10million reads
million reads
Dedicated
$57
per month
Offerings
Pricing Offerings
HadoopMongoDB
Free Trial
NoYes
Free/Freemium Version
YesYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional DetailsFully managed, global cloud database on AWS, Azure, and GCP
More Pricing Information
Community Pulse
Apache HadoopMongoDB
Considered Both Products
Hadoop
Chose Apache Hadoop
Hadoop provides storage for large data sets and a powerful processing model to crunch and transform huge amounts of data. It does not assume the underlying hardware or infrastructure and enables the users to build data processing infrastructure from commodity hardware. All the …
MongoDB
Chose MongoDB
In the beginning, we considered several products in the market. Since our project was a science and research project, our budget wasn't as big as a commercial project, but still, we wanted the product to be scalable so that we could deal with "smooth transition" from research …
Chose MongoDB
The way MongoDB handles the data is unique and the indexing of data is powerful.
Chose MongoDB
Cassandra: may be better for bigger use cases, in PB range, due to our use cases being slightly smaller, we did not need this, but we highly rely on efficient indexing, and low latency, which seemed to be better based on our testing in Mongodb.
Couchbase Server: Document …
Chose MongoDB
I use Cassandra more often these days for best in class performance, tunable consistency, linear scalability. In similar cases, I have used Apache HBase. But if there is a need for document store, MongoDB is the top choice.
Chose MongoDB
First of all, MongoDB has more consistent version control than Hadoop, and it has more documentation to start, while hadoop documentation always confuses me a little bit. MongoDB uses javascript which is more close to the nature language than Hadoop. When you test something …
Chose MongoDB
The main reason to choose MongoDB was a huge community and good documentation - it's better if we compare it to similar products.
Top Pros
Top Cons
Features
Apache HadoopMongoDB
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Apache Hadoop
-
Ratings
MongoDB
9.1
38 Ratings
3% above category average
Performance00 Ratings9.038 Ratings
Availability00 Ratings9.738 Ratings
Concurrency00 Ratings8.638 Ratings
Security00 Ratings8.638 Ratings
Scalability00 Ratings9.438 Ratings
Data model flexibility00 Ratings9.138 Ratings
Deployment model flexibility00 Ratings9.137 Ratings
Best Alternatives
Apache HadoopMongoDB
Small Businesses

No answers on this topic

IBM Cloudant
IBM Cloudant
Score 8.0 out of 10
Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.9 out of 10
IBM Cloudant
IBM Cloudant
Score 8.0 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 8.6 out of 10
IBM Cloudant
IBM Cloudant
Score 8.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache HadoopMongoDB
Likelihood to Recommend
8.9
(36 ratings)
9.4
(78 ratings)
Likelihood to Renew
9.6
(8 ratings)
10.0
(67 ratings)
Usability
8.5
(5 ratings)
9.0
(14 ratings)
Availability
-
(0 ratings)
9.0
(1 ratings)
Performance
8.0
(1 ratings)
-
(0 ratings)
Support Rating
7.5
(3 ratings)
9.6
(13 ratings)
Online Training
6.1
(2 ratings)
-
(0 ratings)
Implementation Rating
-
(0 ratings)
8.4
(2 ratings)
User Testimonials
Apache HadoopMongoDB
Likelihood to Recommend
Apache
Altogether, I want to say that Apache Hadoop is well-suited to a larger and unstructured data flow like an aggregation of web traffic or even advertising. I think Apache Hadoop is great when you literally have petabytes of data that need to be stored and processed on an ongoing basis. Also, I would recommend that the software should be supplemented with a faster and interactive database for a better querying service. Lastly, it's very cost-effective so it is good to give it a shot before coming to any conclusion.
Read full review
MongoDB
If asked by a colleague I would highly recommend MongoDB. MongoDB provides incredible flexibility and is quick and easy to set up. It also provides extensive documentation which is very useful for someone new to the tool. Though I've used it for years and still referenced the docs often. From my experience and the use cases I've worked on, I'd suggest using it anywhere that needs a fast, efficient storage space for non-relational data. If a relational database is needed then another tool would be more apt.
Read full review
Pros
Apache
  • Handles large amounts of unstructured data well, for business level purposes
  • Is a good catchall because of this design, i.e. what does not fit into our vertical tables fits here.
  • Decent for large ETL pipelines and logging free-for-alls because of this, also.
Read full review
MongoDB
  • Being a JSON language optimizes the response time of a query, you can directly build a query logic from the same service
  • You can install a local, database-based environment rather than the non-relational real-time bases such a firebase does not allow, the local environment is paramount since you can work without relying on the internet.
  • Forming collections in Mango is relatively simple, you do not need to know of query to work with it, since it has a simple graphic environment that allows you to manage databases for those who are not experts in console management.
Read full review
Cons
Apache
  • Less organizational support system. Bugs need to be fixed and outside help take a long time to push updates
  • Not for small data sets
  • Data security needs to be ramped up
  • Failure in NameNode has no replication which takes a lot of time to recover
Read full review
MongoDB
  • An aggregate pipeline can be a bit overwhelming as a newcomer.
  • There's still no real concept of joins with references/foreign keys, although the aggregate framework has a feature that is close.
  • Database management/dev ops can still be time-consuming if rolling your own deployments. (Thankfully there are plenty of providers like Compose or even MongoDB's own Atlas that helps take care of the nitty-gritty.
Read full review
Likelihood to Renew
Apache
Hadoop is organization-independent and can be used for various purposes ranging from archiving to reporting and can make use of economic, commodity hardware. There is also a lot of saving in terms of licensing costs - since most of the Hadoop ecosystem is available as open-source and is free
Read full review
MongoDB
I am looking forward to increasing our SaaS subscriptions such that I get to experience global replica sets, working in reads from secondaries, and what not. Can't wait to be able to exploit some of the power that the "Big Boys" use MongoDB for.
Read full review
Usability
Apache
Great! Hadoop has an easy to use interface that mimics most other data warehouses. You can access your data via SQL and have it display in a terminal before exporting it to your business intelligence platform of choice. Of course, for smaller data sets, you can also export it to Microsoft Excel.
Read full review
MongoDB
NoSQL database systems such as MongoDB lack graphical interfaces by default and therefore to improve usability it is necessary to install third-party applications to see more visually the schemas and stored documents. In addition, these tools also allow us to visualize the commands to be executed for each operation.
Read full review
Support Rating
Apache
We went with a third party for support, i.e., consultant. Had we gone with Azure or Cloudera, we would have obtained support directly from the vendor. my rating is more on the third party we selected and doesn't reflect the overall support available for Hadoop. I think we could have done better in our selection process, however, we were trying to use an already approved vendor within our organization. There is plenty of self-help available for Hadoop online.
Read full review
MongoDB
Finding support from local companies can be difficult. There were times when the local company could not find a solution and we reached a solution by getting support globally. If a good local company is found, it will overcome all your problems with its global support.
Read full review
Online Training
Apache
Hadoop is a complex topic and best suited for classrom training. Online training are a waste of time and money.
Read full review
MongoDB
No answers on this topic
Implementation Rating
Apache
No answers on this topic
MongoDB
While the setup and configuration of MongoDB is pretty straight forward, having a vendor that performs automatic backups and scales the cluster automatically is very convenient. If you do not have a system administrator or DBA familiar with MongoDB on hand, it's a very good idea to use a 3rd party vendor that specializes in MongoDB hosting. The value is very well worth it over hosting it yourself since the cost is often reasonable among providers.
Read full review
Alternatives Considered
Apache
Not used any other product than Hadoop and I don't think our company will switch to any other product, as Hadoop is providing excellent results. Our company is growing rapidly, Hadoop helps to keep up our performance and meet customer expectations. We also use HDFS which provides very high bandwidth to support MapReduce workloads.
Read full review
MongoDB
We have [measured] the speed in reading/write operations in high load and finally select the winner = MongoDBWe have [not] too much data but in case there will be 10 [times] more we need Cassandra. Cassandra's storage engine provides constant-time writes no matter how big your data set grows. For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support.
Read full review
Return on Investment
Apache
  • There are many advantages of Hadoop as first it has made the management and processing of extremely colossal data very easy and has simplified the lives of so many people including me.
  • Hadoop is quite interesting due to its new and improved features plus innovative functions.
Read full review
MongoDB
  • Open Source w/ reasonable support costs have a direct, positive impact on the ROI (we moved away from large, monolithic, locked in licensing models)
  • You do have to balance the necessary level of HA & DR with the number of servers required to scale up and scale out. Servers cost money - so DR & HR doesn't come for free (even though it's built into the architecture of MongoDB
Read full review
ScreenShots

MongoDB Screenshots

Screenshot of Screenshot of Screenshot of Screenshot of Screenshot of Screenshot of