Apache Hive is database/data warehouse software that supports data querying and analysis of large datasets stored in the Hadoop distributed file system (HDFS) and other compatible systems, and is distributed under an open source license.
Apache Hive is a query language developed by Facebook to query over a large distributed dataset. Apache is a query engine that runs on top of HDFS, so it utilizes the resources of HDFS Hadoop setup, while Apache Spark is an in memory compute engine, and that's why [it is] much …
Apache Spark is similar in the sense that it too can be used to query and process large amounts of data through its Dataframe interface. Hive is better for short-term querying while Spark is better for persistent and long-term analysis. Another product is Impala. For our …
To query a huge, distributed dataset, Apache Hive was built by Facebook. Unlike Apache Hive, Apache Spark is an in-memory computation engine, which is why it is significantly quicker than Apache Hive at querying large amounts of data. In contrast to Apache HBase, Apache Hive is …
Verified User
Engineer
Chose Apache Hive
Hive and Spark have the same parent company hence they share a lot of common features. Hive follows SQL syntax while Spark has support for RDD, DataFrame API. DataFrame API supports both SQL syntax and has custom functions to perform the same functionality. Spark is faster and …
One of the major advantages of using Presto or the main reason why people use Presto (Teradata) is due to that fact it can support multiple data sources - which is lacking as in the case of Apache Hive. But still, most people who come from a Structured data-based background …
Easy to understand, well supported by the community, good documentation. However, it is possible that SAP Business Warehouse could be a good fit, too, even maybe better. I did not have the chance to try it though. We selected Apache Hive because it was far less expensive and …
Hive was one of the first SQL on Hadoop technologies, and it comes bundled with the main Hadoop distributions of HDP and CDH. Since its release, it has gained good improvements, but selecting the right SQL on Hadoop technology requires a good understanding of the strengths and …
For storing bulk amount of data in a tabular manner, and where there's no need need of primary key, or just in case, if redundant data is received, it will not cause a problem. For small amounts of data, it does run MR, so beware. If your intention is to use it as a …
Apache Pig is probably the most direct technology to compare to Hive and has several different use cases to Hive. If you want to simplify processing tasks that run using MapReduce then Apache Pig may be a better tool for the job. However if you are going to be running many …
Apache Spark is a fast-processing in-memory computing framework. It is 10 times faster than Apache Hadoop. Earlier we were using Apache Hadoop for processing data on the disk but now we are shifted to Apache Spark because of its in-memory computation capability. Also in SAP …
Verified User
Engineer
Chose Apache Spark
Apache Spark has much more better performance and features if we compare with Hive or map/reduce kind of solutions. Spark has many other features for machine learning, streaming.
All the above systems work quite well on big data transformations whereas Spark really shines with its bigger API support and its ability to read from and write to multiple data sources. Using Spark one can easily switch between declarative versus imperative versus functional …
Even with Python, MapReduce is lengthy coding. Combination of Python with Apache Spark will not only shorten the code, but it will effectively increase the speed of algorithms. Occasionally, I use MapReduce, but Apache Spark will replace MapReduce very soon. It has many …
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and …
Apache Pig and Apache Hive provide most of the things spark provide but apache spark has more features like actions and transformations which are easy to code. Spark uses optimization technique as we can select driver program and manipulate DAG (Directed Acyclic Graph) Python …
Spark has primarily replaced my use of writing pure Hadoop MapReduce or Apache Pig jobs for processing data. I like the fact that I can alternate between the main programming languages that I know - Java and Python - and use those to learn the Scala API. Spark also can be …