Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.
N/A
IBM StreamSets
Score 8.0 out of 10
N/A
IBM® StreamSets enables users to create and manage smart streaming data pipelines through a graphical interface, facilitating data integration across hybrid and multicloud environments. IBM StreamSets can support millions of data pipelines for analytics, applications and hybrid integration.
StreamSets is a one-stop solution to design Data engineering Pipelines and doesn't require deep Programming knowledge, It's so user-friendly that anyone in Team can contribute to the Idea of pipeline design. In Hadoop One has to be programming proficient to use its various …
Apache Kafka is well-suited for most data-streaming use cases. Amazon Kinesis and Azure EventHubs, unless you have a specific use case where using those cloud PaAS for your data lakes, once set up well, Apache Kafka will take care of everything else in the background. Azure EventHubs, is good for cross-cloud use cases, and Amazon Kinesis - I have no real-world experience. But I believe it is the same.
IBM StreamSets excels in real-time logistics data ingestion and transformation across hybrid systems. It’s less ideal for lightweight ETL tasks or static datasets where simpler tools can achieve similar results with less overhead and complexity.
Really easy to configure. I've used other message brokers such as RabbitMQ and compared to them, Kafka's configurations are very easy to understand and tweak.
Very scalable: easily configured to run on multiple nodes allowing for ease of parallelism (assuming your queues/topics don't have to be consumed in the exact same order the messages were delivered)
Not exactly a feature, but I trust Kafka will be around for at least another decade because active development has continued to be strong and there's a lot of financial backing from Confluent and LinkedIn, and probably many other companies who are using it (which, anecdotally, is many).
Sometimes it becomes difficult to monitor our Kafka deployments. We've been able to overcome it largely using AWS MSK, a managed service for Apache Kafka, but a separate monitoring dashboard would have been great.
Simplify the process for local deployment of Kafka and provide a user interface to get visibility into the different topics and the messages being processed.
Learning curve around creation of broker and topics could be simplified
IBM Stream sets has been a wonderful addition to our technology stack. It has helped in some of our initiatives such as data engineering, data integration for not only external customers but also for internal purposes. The tool has also helped on our use cases related to streaming data. Moving to another tool would require significant amount of work and time.
Apache Kafka is highly recommended to develop loosely coupled, real-time processing applications. Also, Apache Kafka provides property based configuration. Producer, Consumer and broker contain their own separate property file
The StreamSets platform is very easy to use and the interface is extremely intuitive. The drag-and-drop, low-code design makes it accessible for teams with varying technical skills, allowing us to quickly connect sources, define transformations, and deploy pipelines without heavy coding. StreamSets allows us to get started quickly and not have to worry about our pipelines breaking once they're built.
Support for Apache Kafka (if willing to pay) is available from Confluent that includes the same time that created Kafka at Linkedin so they know this software in and out. Moreover, Apache Kafka is well known and best practices documents and deployment scenarios are easily available for download. For example, from eBay, Linkedin, Uber, and NYTimes.
Streamsets support has improved a lot in the last couple of years. We had some challenges in the beginning with support, but now the quality of the support and the responsiveness to tickets are better. We have contacted support multiple times when it came to scenarios where the system was slow or the output as not as we expected
I used other messaging/queue solutions that are a lot more basic than Confluent Kafka, as well as another solution that is no longer in the market called Xively, which was bought and "buried" by Google. In comparison, these solutions offer way fewer functionalities and respond to other needs.
First advantage is that this software is particularly new and it keeps updating according to the needs of the user. Other advantage is the it organises and produces conclusions on the basis of data without leaving any relevant information. Other softwares lack in data summarising and readability of the charts and sheets they produce.
Positive: Get a quick and reliable pub/sub model implemented - data across components flows easily.
Positive: it's scalable so we can develop small and scale for real-world scenarios
Negative: it's easy to get into a confusing situation if you are not experienced yet or something strange has happened (rare, but it does). Troubleshooting such situations can take time and effort.