Apache Kafka vs. Oracle Autonomous Data Warehouse

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Kafka
Score 8.5 out of 10
N/A
Apache Kafka is an open-source stream processing platform developed by the Apache Software Foundation written in Scala and Java. The Kafka event streaming platform is used by thousands of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical applications.N/A
Oracle Autonomous Data Warehouse
Score 8.9 out of 10
N/A
Oracle Autonomous Data Warehouse is optimized for analytic workloads, including data marts, data warehouses, data lakes, and data lakehouses. With Autonomous Data Warehouse, data scientists, business analysts, and nonexperts can discover business insights using data of any size and type. The solution is built for the cloud and optimized using Oracle Exadata.N/A
Pricing
Apache KafkaOracle Autonomous Data Warehouse
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache KafkaOracle Autonomous Data Warehouse
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache KafkaOracle Autonomous Data Warehouse
Best Alternatives
Apache KafkaOracle Autonomous Data Warehouse
Small Businesses

No answers on this topic

Google BigQuery
Google BigQuery
Score 8.7 out of 10
Medium-sized Companies
IBM MQ
IBM MQ
Score 9.1 out of 10
Cloudera Enterprise Data Hub
Cloudera Enterprise Data Hub
Score 9.0 out of 10
Enterprises
IBM MQ
IBM MQ
Score 9.1 out of 10
Oracle Exadata
Oracle Exadata
Score 9.9 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache KafkaOracle Autonomous Data Warehouse
Likelihood to Recommend
8.1
(19 ratings)
8.9
(32 ratings)
Likelihood to Renew
9.0
(2 ratings)
8.0
(1 ratings)
Usability
8.0
(2 ratings)
-
(0 ratings)
Support Rating
8.4
(4 ratings)
-
(0 ratings)
Implementation Rating
-
(0 ratings)
9.0
(1 ratings)
User Testimonials
Apache KafkaOracle Autonomous Data Warehouse
Likelihood to Recommend
Apache
Apache Kafka is well-suited for most data-streaming use cases. Amazon Kinesis and Azure EventHubs, unless you have a specific use case where using those cloud PaAS for your data lakes, once set up well, Apache Kafka will take care of everything else in the background. Azure EventHubs, is good for cross-cloud use cases, and Amazon Kinesis - I have no real-world experience. But I believe it is the same.
Read full review
Oracle
II would recommend Oracle Autonomous Data Warehouse to someone looking to fully automate the transferring of data especially in a warehouse scenario though I can see the elasticity of the suite that is offered and can see it is applicable in other scenarios not just warehouses.
Read full review
Pros
Apache
  • Really easy to configure. I've used other message brokers such as RabbitMQ and compared to them, Kafka's configurations are very easy to understand and tweak.
  • Very scalable: easily configured to run on multiple nodes allowing for ease of parallelism (assuming your queues/topics don't have to be consumed in the exact same order the messages were delivered)
  • Not exactly a feature, but I trust Kafka will be around for at least another decade because active development has continued to be strong and there's a lot of financial backing from Confluent and LinkedIn, and probably many other companies who are using it (which, anecdotally, is many).
Read full review
Oracle
  • Very easy and fast to load data into the Oracle Autonomous Data Warehouse
  • Exceptionally fast retrieval of data joining 100 million row table with a billion row table plus the size of the database was reduced by a factor of 10 due to how Oracle store[s] and organise[s] data and indexes.
  • Flexibility with scaling up and down CPU on the fly when needed, and just stop it when not needed so you don't get charged when it is not running.
  • It is always patched and always available and you can add storage dynamically as you need it.
Read full review
Cons
Apache
  • Sometimes it becomes difficult to monitor our Kafka deployments. We've been able to overcome it largely using AWS MSK, a managed service for Apache Kafka, but a separate monitoring dashboard would have been great.
  • Simplify the process for local deployment of Kafka and provide a user interface to get visibility into the different topics and the messages being processed.
  • Learning curve around creation of broker and topics could be simplified
Read full review
Oracle
  • It is very expensive product. But not to mention, there's good reasons why it is expensive.
  • The product should support more cloud based services. When we made the decision to buy the product (which was 20 years ago,) there was no such thing to consider, but moving to a cloud based data warehouse may promise more scalability, agility, and cost reduction. The new version of Data Warehouse came out on the way, but it looks a bit behind compared to other competitors.
  • Our healthcare data consists of 30% coded data (such as ICD 10 / SNOMED C,T) but the rests is narrative (such as clinical notes.). Oracle is the best for warehousing standardized data, but not a good choice when considering unstructured data, or a mix of the two.
Read full review
Likelihood to Renew
Apache
Kafka is quickly becoming core product of the organization, indeed it is replacing older messaging systems. No better alternatives found yet
Read full review
Oracle
Because
  • It is really simple to provision and configure.
  • Does not require continous attention from the DBA, autonomous features allows the database to perform most of the regular admin tasks without need for human intervention.
  • Allows to integrate multiple data sources on a central data warehouse, and explode the information stored with different analytic and reporting tools.
Read full review
Usability
Apache
Apache Kafka is highly recommended to develop loosely coupled, real-time processing applications. Also, Apache Kafka provides property based configuration. Producer, Consumer and broker contain their own separate property file
Read full review
Oracle
No answers on this topic
Support Rating
Apache
Support for Apache Kafka (if willing to pay) is available from Confluent that includes the same time that created Kafka at Linkedin so they know this software in and out. Moreover, Apache Kafka is well known and best practices documents and deployment scenarios are easily available for download. For example, from eBay, Linkedin, Uber, and NYTimes.
Read full review
Oracle
No answers on this topic
Implementation Rating
Apache
No answers on this topic
Oracle
Understanding Oracle Cloud Infrastructure is really simple, and Autonomous databases are even more. Using shared or dedicated infrastructure is one of the few things you need to consider at the moment of starting provisioning your Oracle Autonomous Data Warehouse.
Read full review
Alternatives Considered
Apache
I used other messaging/queue solutions that are a lot more basic than Confluent Kafka, as well as another solution that is no longer in the market called Xively, which was bought and "buried" by Google. In comparison, these solutions offer way fewer functionalities and respond to other needs.
Read full review
Oracle
As I mentioned, I have also worked with Amazon Redshift, but it is not as versatile as Oracle Autonomous Data Warehouse and does not provide a large variety of products. Oracle Autonomous Data Warehouse is also more reliable than Amazon Redshift, hence why I have chosen it
Read full review
Return on Investment
Apache
  • Positive: Get a quick and reliable pub/sub model implemented - data across components flows easily.
  • Positive: it's scalable so we can develop small and scale for real-world scenarios
  • Negative: it's easy to get into a confusing situation if you are not experienced yet or something strange has happened (rare, but it does). Troubleshooting such situations can take time and effort.
Read full review
Oracle
  • Overall the business objective of all of our clients have been met positively with Oracle Data Warehouse. All of the required analysis the users were able to successfully carry out using the warehouse data.
  • Using a 3-tier architecture with the Oracle Data Warehouse at the back end the mid-tier has been integrated well. This is big plus in providing the necessary tools for end users of the data warehouse to carry out their analysis.
  • All of the various BI products (OBIEE, Cognos, etc.) are able to use and exploit the various analytic built-in functionalities of the Oracle Data Warehouse.
Read full review
ScreenShots