Likelihood to Recommend Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review Our organization found Cloudant most suitable if One, a fixed pricing structure would make the most sense, for example in a situation where the project Cloudant is being used in makes its revenue in procurement or fixed retainer — thus the predictability of costs is paramount; Two, where you need to frequently edit the data and/or share access to the query engine to non-engineers — this is where the GUI shines.
Read full review Pros Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues Faster in execution times compare to Hadoop and PIG Latin Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner Interoperability between SQL and Scala / Python style of munging data Read full review For us, performance and scalability is the key, and Cloudant DB backed by CouchDB is scalable and performant. IBM Cloudant dB is very easy to provision for sandbox, development, QA as well as production. Support for Java for CouchDB app server analytics enables a greater control for over developers. Schema free oriented very easy to program and build applications on it. We love it!! Read full review Cons Memory management. Very weak on that. PySpark not as robust as scala with spark. spark master HA is needed. Not as HA as it should be. Locality should not be a necessity, but does help improvement. But would prefer no locality Read full review It was only after we went with the cloud-based solution that IBM rolled out an on-premise version. We found that a 3rd-party ODBC driver was required for a few applications that needed to pull data out of Cloudant. The sales process was difficult because the salesperson we used was not as versed on Cloudant as I had hoped. Read full review Likelihood to Renew Capacity of computing data in cluster and fast speed.
Steven Li Senior Software Developer (Consultant)
Read full review the flexibility of NoSQL allow us to modify and upgrade our apps very fast and in a convenient way. Having the solution hosted by IBM is also giving us the chance to focus on features and the improvement of our apps. It's one thing less to be worried about
Read full review Usability If the team looking to use Apache Spark is not used to debug and tweak settings for jobs to ensure maximum optimizations, it can be frustrating. However, the documentation and the support of the community on the internet can help resolve most issues. Moreover, it is highly configurable and it integrates with different tools (eg: it can be used by
dbt core), which increase the scenarios where it can be used
Read full review It's mostly just a straight forward API to a data store. I knock one off for the full text search thing, but I don't need it much anyways. Also, the dashboard UI they give is pretty nice to use. It provides syntax-highlighting for writing views and queries are easy to test. I wish other DBs had a UI like this.
Read full review Reliability and Availability it is a highly available solution in the IBM cloud portfolio and hence we have never had any issues with the data base being available - we also do continuous replication to be on the safer side just in case some thing goes awry. We also perform twice a year disaster recovery tests.
Read full review Performance very easy to get started and is very developer friendly given that it uses couchDB analytics. It is a cloud based solution and hence there is no hardware investment in a server and staging the server to get started and the associated delays/bureaucracy involved to get started. Good documentation is also available.
Read full review Support Rating 1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review Very happy by the commitment given by the team which has been really good over the last 7 years of usage.
Read full review Online Training online resources are good enough to understand but there is nothing like testing. In our case, we discovered some not documented behavior that we take in count now. Also, the experience in NodeJs is critical. Also, take in count that most of the "good practices" with cloudant are not in online courses but in blogs and pages from independent developers
Read full review Implementation Rating Test the architecture on CouchDB helped us to address initial design flaws. The migration to Cloudant as such was very painless. We have migrate our replication system to Cloudant Android Sync for mobile devices. We have regular informal contact with the Cloudant leadership to discuss our use cases and implementation strategies. Read full review Alternatives Considered Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the
Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review The feature-set, including security, is very comparable. Overall, IBM's services added to the product are mature and stable, although product support and engineers could be a little better. Global availability is improving, and Disaster Recover Capabilities are great. Overall, it's very comparable to
MongoDB as a DBaaS offer, available globally and with great documentation.
Read full review Scalability The service scales incredibly well. As you would expect from CloudDB and IBM combination. The only reason I wouldn't score it a 10 is the fact that document trees can get nested and nested very quickly if you are attempting to do very complex datasets. Which makes your code that much more complex to deal. Its very possible we could find a solution to this problem with better database planning to begin with, but one of the reasons we chose a service over a self-hosted solution was so we could set it up quick and forget about it. So we weren't going to dedicate a team to architecture optimization.
Read full review Return on Investment Business leaders are able to take data driven decisions Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available Business is able come up with new product ideas Read full review IBM Cloudant is very secure and we never have to worry about losing data/unauthorized access It is one of the best data backup system and works well Global availability means it is easy to connect to the nearest data center and this reduces load time which is great. Read full review ScreenShots