Apache Spark vs. IBM Analytics Engine

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Apache Spark
Score 8.5 out of 10
N/A
N/AN/A
IBM Analytics Engine
Score 9.1 out of 10
N/A
IBM BigInsights is an analytics and data visualization tool leveraging hadoop.N/A
Pricing
Apache SparkIBM Analytics Engine
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Apache SparkIBM Analytics Engine
Free Trial
NoNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Apache SparkIBM Analytics Engine
Considered Both Products
Apache Spark

No answer on this topic

IBM Analytics Engine
Chose IBM Analytics Engine
We initially wanted to go with Google BigQuery, mainly for the name recognition. However, the pricing and support structure led us to seek alternatives, which pointed us to IBM. Apache Spark was also in the running, but here IBM's domination in the industry made the choice a …
Top Pros
Top Cons
Best Alternatives
Apache SparkIBM Analytics Engine
Small Businesses

No answers on this topic

No answers on this topic

Medium-sized Companies
Cloudera Manager
Cloudera Manager
Score 9.7 out of 10
Cloudera Manager
Cloudera Manager
Score 9.7 out of 10
Enterprises
IBM Analytics Engine
IBM Analytics Engine
Score 9.1 out of 10
Apache Spark
Apache Spark
Score 8.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Apache SparkIBM Analytics Engine
Likelihood to Recommend
9.4
(23 ratings)
9.5
(9 ratings)
Likelihood to Renew
10.0
(1 ratings)
-
(0 ratings)
Usability
9.4
(2 ratings)
-
(0 ratings)
Support Rating
8.6
(6 ratings)
-
(0 ratings)
User Testimonials
Apache SparkIBM Analytics Engine
Likelihood to Recommend
Apache
The software appears to run more efficiently than other big data tools, such as Hadoop. Given that, Apache Spark is well-suited for querying and trying to make sense of very, very large data sets. The software offers many advanced machine learning and econometrics tools, although these tools are used only partially because very large data sets require too much time when the data sets get too large. The software is not well-suited for projects that are not big data in size. The graphics and analytical output are subpar compared to other tools.
Read full review
IBM
  • Well suited for my big data related project or a static data set analysis especially for uploading huge dataset to the cluster.
  • But had some issues with connecting IoT real-time data and feeding to Power BI. It might be my understanding please take it as a mere comment rather than a suggestion.
Read full review
Pros
Apache
  • Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues
  • Faster in execution times compare to Hadoop and PIG Latin
  • Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner
  • Interoperability between SQL and Scala / Python style of munging data
Read full review
IBM
  • Jobs with Spark, Hadoop, or Hive queries are rapidly attained
  • Can collect, organize and analyze your data accurately
  • You can customize, for example, Spark or Hadoop configuration settings, or Python, R, Scala, or Java libraries.
Read full review
Cons
Apache
  • Memory management. Very weak on that.
  • PySpark not as robust as scala with spark.
  • spark master HA is needed. Not as HA as it should be.
  • Locality should not be a necessity, but does help improvement. But would prefer no locality
Read full review
IBM
  • Easier pricing and plug-and-play like you see with AWS and Azure, it would be nice from a budgeting and billing standpoint, as well as better support for the administration.
  • Bundling of the Cloud Object Storage should be included with the Analytics Engine.
  • The inability to add your own Hadoop stack components has made some transfers a little more complex.
Read full review
Likelihood to Renew
Apache
Capacity of computing data in cluster and fast speed.
Read full review
IBM
No answers on this topic
Usability
Apache
The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review
IBM
No answers on this topic
Support Rating
Apache
1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review
IBM
No answers on this topic
Alternatives Considered
Apache
Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review
IBM
We initially wanted to go with Google BigQuery, mainly for the name recognition. However, the pricing and support structure led us to seek alternatives, which pointed us to IBM. Apache Spark was also in the running, but here IBM's domination in the industry made the choice a no-brainer. As previously stated, the support received was not quite what we expected, but was adequate.
Read full review
Return on Investment
Apache
  • Business leaders are able to take data driven decisions
  • Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available
  • Business is able come up with new product ideas
Read full review
IBM
  • This product has allowed us to gather analytics data across multiple platforms so we can view and analyze the data from different workflows, all in one place.
  • IBM Analytics has allowed us to scale on demand which allows us to capture more and more data, thus increasing our ROI.
  • The convenience of the ability to access and administer the product via multiple interfaces has allowed our administrators to ensure that the application is making a positive ROI for our business users and partners.
Read full review
ScreenShots