Likelihood to Recommend Well suited: To most of the local run of datasets and non-prod systems - scalability is not a problem at all. Including data from multiple types of data sources is an added advantage. MLlib is a decently nice built-in library that can be used for most of the ML tasks. Less appropriate: We had to work on a RecSys where the music dataset that we used was around 300+Gb in size. We faced memory-based issues. Few times we also got memory errors. Also the MLlib library does not have support for advanced analytics and deep-learning frameworks support. Understanding the internals of the working of Apache Spark for beginners is highly not possible.
Read full review From my own perspective and the tasks that I perform on a daily basis, MySQL is perfect. It has a reasonable footprint, is fast enough and offers the security and flexibility I need. Everyone has their preferred applications and, no doubt, for larger data warehouses or more intensive applications, MySQL may have its limits, but for the area that I operate in, it's a great match.
Read full review Pros Rich APIs for data transformation making for very each to transform and prepare data in a distributed environment without worrying about memory issues Faster in execution times compare to Hadoop and PIG Latin Easy SQL interface to the same data set for people who are comfortable to explore data in a declarative manner Interoperability between SQL and Scala / Python style of munging data Read full review Security: is embedded at each level in MySQL. Authentication mechanisms are in place for configuring user access and even service account access to applications. MySQL is secure enough under the hood to store your sensitive information. Also, additional plugins are available that sit on top of MySQL for even tighter security. Widely adopted: MySQL is used across the industry and is trusted the most. Therefore, if you face any problems, simply Google it and you shall land in plenty of forums. This is a great relief as when you are in a need of help, you can find it right in your browser. Lightweight application: MySQL is not a heavy application. However, the data you store in the database can get heavy with time, but as in the configuration and MySql application files, those are not very heavy and can easily be installed on legacy systems as well. Read full review Cons Memory management. Very weak on that. PySpark not as robust as scala with spark. spark master HA is needed. Not as HA as it should be. Locality should not be a necessity, but does help improvement. But would prefer no locality Read full review Although you can add the data you require as more and more data is added, the fixity of it becomes more critical. As the demand, size, and use of the system increase, you may also need to change or acquire more equipment on your servers, although this is an internal inconvenience for the company. Read full review Likelihood to Renew Capacity of computing data in cluster and fast speed.
Steven Li Senior Software Developer (Consultant)
Read full review For teaching Databases and SQL, I would definitely continue to use MySQL. It provides a good, solid foundation to learn about databases. Also to learn about the SQL language and how it works with the creation, insertion, deletion, updating, and manipulation of data, tables, and databases. This SQL language is a foundation and can be used to learn many other database related concepts.
Read full review Usability The only thing I dislike about spark's usability is the learning curve, there are many actions and transformations, however, its wide-range of uses for ETL processing, facility to integrate and it's multi-language support make this library a powerhouse for your data science solutions. It has especially aided us with its lightning-fast processing times.
Read full review I give MySQL a 9/10 overall because I really like it but I feel like there are a lot of tech people who would hate it if I gave it a 10/10. I've never had any problems with it or reached any of its limitations but I know a few people who have so I can't give it a 10/10 based on those complaints.
Read full review Support Rating 1. It integrates very well with scala or python. 2. It's very easy to understand SQL interoperability. 3. Apache is way faster than the other competitive technologies. 4. The support from the Apache community is very huge for Spark. 5. Execution times are faster as compared to others. 6. There are a large number of forums available for Apache Spark. 7. The code availability for Apache Spark is simpler and easy to gain access to. 8. Many organizations use Apache Spark, so many solutions are available for existing applications.
Read full review The support staff is friendly, knowledgeable, and efficient. I only had to get part way through my explanations before they had a solution. They will walk you through a fix or actually connect in and fix the problem for you--or would if you can allow it. I've done it both ways with them. They are always forthcoming with 'how to do this if it happens again' information. I love working with MySQL support.
Read full review Implementation Rating 1. Estimate your data size. 2. Test, test, and test.
Read full review Alternatives Considered Spark in comparison to similar technologies ends up being a one stop shop. You can achieve so much with this one framework instead of having to stitch and weave multiple technologies from the
Hadoop stack, all while getting incredibility performance, minimal boilerplate, and getting the ability to write your application in the language of your choosing.
Read full review MongoDB has a dynamic schema for how data is stored in 'documents' whereas MySQL is more structured with tables, columns, and rows.
MongoDB was built for high availability whereas MySQL can be a challenge when it comes to replication of the data and making everything redundant in the event of a DR or outage.
Read full review Return on Investment Business leaders are able to take data driven decisions Business users are able access to data in near real time now . Before using spark, they had to wait for at least 24 hours for data to be available Business is able come up with new product ideas Read full review As it is an open source solution through community solution, we can use it in a multitude of projects without cost license The acquisition by Oracle makes you need to contract support for the enterprise version If you have knowledge about oracle databases, you can get more out of the enterprise version Read full review ScreenShots