Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research and by community contributors.
N/A
Dataiku
Score 8.2 out of 10
N/A
The Dataiku platform unifies data work from analytics to Generative AI. It supports enterprise analytics with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Pricing
Caffe Deep Learning Framework
Dataiku
Editions & Modules
No answers on this topic
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
Offerings
Pricing Offerings
Caffe Deep Learning Framework
Dataiku
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Caffe Deep Learning Framework
Dataiku
Features
Caffe Deep Learning Framework
Dataiku
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Caffe Deep Learning Framework
-
Ratings
Dataiku
8.6
5 Ratings
3% above category average
Connect to Multiple Data Sources
00 Ratings
8.05 Ratings
Extend Existing Data Sources
00 Ratings
10.04 Ratings
Automatic Data Format Detection
00 Ratings
10.05 Ratings
MDM Integration
00 Ratings
6.52 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Caffe Deep Learning Framework
-
Ratings
Dataiku
10.0
5 Ratings
17% above category average
Visualization
00 Ratings
10.05 Ratings
Interactive Data Analysis
00 Ratings
10.05 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Caffe Deep Learning Framework
-
Ratings
Dataiku
9.5
5 Ratings
16% above category average
Interactive Data Cleaning and Enrichment
00 Ratings
9.05 Ratings
Data Transformations
00 Ratings
9.05 Ratings
Data Encryption
00 Ratings
10.04 Ratings
Built-in Processors
00 Ratings
10.04 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Caffe Deep Learning Framework
-
Ratings
Dataiku
8.5
5 Ratings
2% above category average
Multiple Model Development Languages and Tools
00 Ratings
8.05 Ratings
Automated Machine Learning
00 Ratings
8.05 Ratings
Single platform for multiple model development
00 Ratings
8.05 Ratings
Self-Service Model Delivery
00 Ratings
10.04 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Caffe is only appropriate for some new beginners who don't want to write any lines of code, just want to use existing models for image recognition, or have some taste of the so-called Deep Learning.
Dataiku is an awesome tool for data scientists. It really makes our lives easier. It is also really good for non technical users to see and follow along with the process. I do think that people can fall into the trap of using it without any knowledge at all because so much is automated, but I dont think that is the fault of Dataiku.
Caffe's model definition - static configuration files are really painful. Maintaining big configuration files with so many parameters and details of many layers can be a really challenging task.
Besides imagine and vision (CNN), Caffe also gradually adds some other NN architecture support. It doesn't play well in a recurrent domain, so we have to say variety is a problem.
Caffe's deployment for production is not easy. The community support and project development all mean it is almost fading out of the market.
The learning curve is quite steep. Although TensorFlow's is not easy to master either, the reward for Caffe is much less than the TensorFlow can offer.
The integrated windows of frontend and backend in web applications make it cumbersome for the developer.
When dealing with multiple data flows, it becomes really confusing, though they have introduced a feature (Zones) to cater to this issue.
Bundling, exporting, and importing projects sometimes create issues related to code environment. If the code environment is not available, at least the schema of the flow we should be able to import should be.
The user experience is very good. Everything feels intuitive and "flows" (sorry excuse the pun) so nicely, and the customization level is also appropriate to the tool. Even as a newer data scientist, it felt easy to use and the explanations/tutorials were very good. The documentation is also at a good level
The open source user community is friendly, helpful, and responsive, at times even outdoing commercial software vendors. Documentation is also top notch, and usually resolves issues without the need for human interactions. Great product design, with a focus on user experience, also makes platform use intuitive, thus reducing the need for explicit support.
TensorFlow is kind of low-level API most suited for those developers who like to control the details, while Keras provides some kind of high-level API for those users who want to boost their project or experiment by reusing most of the existing architecture or models and the accumulated best practice. However, Caffe isn't like either of them so the position for the user is kind of embarrassing.
Anaconda is mainly used by professional data scientists who have profound knowledge of Python coding, mainly used for building some new algorithm block or some optimization, then the module will be integrated into the Dataiku pipeline/workflow. While Dataiku can be used by even other kinds of users.