The Dataiku platform unifies all data work, from analytics to Generative AI. It can modernize enterprise analytics and accelerate time to insights with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Google Cloud AI
Score 8.4 out of 10
N/A
Google Cloud AI provides modern machine learning services, with pre-trained models and a service to generate tailored models.
N/A
Pricing
Dataiku
Google Cloud AI
Editions & Modules
Discover
Contact sales team
Business
Contact sales team
Enterprise
Contact sales team
No answers on this topic
Offerings
Pricing Offerings
Dataiku
Google Cloud AI
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Dataiku
Google Cloud AI
Features
Dataiku
Google Cloud AI
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Dataiku
9.1
4 Ratings
8% above category average
Google Cloud AI
-
Ratings
Connect to Multiple Data Sources
10.04 Ratings
00 Ratings
Extend Existing Data Sources
10.04 Ratings
00 Ratings
Automatic Data Format Detection
10.04 Ratings
00 Ratings
MDM Integration
6.52 Ratings
00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Dataiku
10.0
4 Ratings
17% above category average
Google Cloud AI
-
Ratings
Visualization
9.94 Ratings
00 Ratings
Interactive Data Analysis
10.04 Ratings
00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Dataiku
10.0
4 Ratings
20% above category average
Google Cloud AI
-
Ratings
Interactive Data Cleaning and Enrichment
10.04 Ratings
00 Ratings
Data Transformations
10.04 Ratings
00 Ratings
Data Encryption
10.04 Ratings
00 Ratings
Built-in Processors
10.04 Ratings
00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Dataiku
8.7
4 Ratings
3% above category average
Google Cloud AI
-
Ratings
Multiple Model Development Languages and Tools
5.14 Ratings
00 Ratings
Automated Machine Learning
10.04 Ratings
00 Ratings
Single platform for multiple model development
10.04 Ratings
00 Ratings
Self-Service Model Delivery
10.04 Ratings
00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Dataiku DSS is very well suited to handle large datasets and projects which requires a huge team to deliver results. This allows users to collaborate with each other while working on individual tasks. The workflow is easily streamlined and every action is backed up, allowing users to revert to specific tasks whenever required. While Dataiku DSS works seamlessly with all types of projects dealing with structured datasets, I haven't come across projects using Dataiku dealing with images/audio signals. But a workaround would be to store the images as vectors and perform the necessary tasks.
Google Cloud AI is a wonderful product for companies that are looking to offset AI and ML processing power to cloud APIs, and specific Machine Learning use cases to APIs as well. For companies that are looking for very specific, customized ML capabilities that require lots of fine-tuning, it may be better to do this sort of processing through open-source libraries locally, to offset the costs that your company might incur through this API usage.
Some of the build in/supported AI modules that can be deployed, for example Tensorflow, do not have up-to-date documentation so what is actually implemented in the latest rev is not what is mentioned in the documentation, resulting in a lot of debugging time.
Customization of existing modules and libraries is harder and it does need time and experience to learn.
Google Cloud AI can do a better job in providing better support for Python and other coding languages.
We are extremely satisfied with the impact that this tool has made on our organization since we have practically moved from crawling to walking in the process of generating information for our main task to investigate in the field through interviews. With the audio to text translation tool there is a difference from heaven to earth in the time of feeding our internal data.
As I have described earlier, the intuitiveness of this tool makes it great as well as the variety of users that can use this tool. Also, the plugins available in their repository provide solutions to various data science problems.
I give 8 because although it´s a tool I really enjoy working with, I think Google Cloud AI's impact is just starting, therefore I can visualize a lot/space of improvements in this tool. As an example the application of AI in international environments with different languages is a good example of that space/room to improve.
The support team is very helpful, and even when we discover the missing features, after providing enough rational reasons and requirements, they put into it their development pipeline for the future release.
Every rep has been nice and helpful whenever I call for help. One of the systems froze and wouldn't start back up and with the help of our assigned rep we got everything back up in a timely manner. This helped us not lose customers and money.
In fact, you only need the basic tech knowledge to do a Google search. You need to know if your organization requires it or not,. our organization required it. And that is why we acquired it and solved a need that we had been suffering from. This is part of the modernization of an organization and part of its growth as a company.
Strictly for Data Science operations, Anaconda can be considered as a subset of Dataiku DSS. While Anaconda supports Python and R programming languages, Dataiku also provides this facility, but also provides GUI to creates models with just a click of a button. This provides the flexibility to users who do not wish to alter the model hyperparameters in greater depths. Writing codes to extract meaningful data is time consuming compared to Dataiku's ability to perform feature engineering and data transformation through click of a button.
These are basic tools although useful, you can't simply ignore them or say they are not good. These tools also have their own values. But, Yes, Google is an advanced one, A king in the field of offering a wide range of tools, quality, speed, easy to use, automation, prebuild, and cost-effective make them a leader and differentiate them from others.
Artificial intelligence and automation seems 'free' and draws the organization in, without seeming to spend a lot of funds. A positive impact, but who is actually tracking the cost?
We want our employees to use it, but many resist technology or are scared of it, so we need a way to make them feel more comfortable with the AI.
The ROI seems positive since we are full in with Google, and the tools come along with the functionality.