DataRobot vs. Vertex AI

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
DataRobot
Score 8.6 out of 10
N/A
The DataRobot AI Platform is presented as a solution that accelerates and democratizes data science by automating the end-to-end journey from data to value and allows users to deploy AI applications at scale. DataRobot provides a centrally governed platform that gives users AI to drive business outcomes, that is available on the user's cloud platform-of-choice, on-premise, or as a fully-managed service. The solutions include tools providing data preparation enabling users to explore and…
$0
Vertex AI
Score 8.8 out of 10
N/A
Vertex AI on Google Cloud is an MLOps solution, used to build, deploy, and scale machine learning (ML) models with fully managed ML tools for any use case.
$0
Starting at
Pricing
DataRobotVertex AI
Editions & Modules
No answers on this topic
Imagen model for image generation
$0.0001
Starting at
Text, chat, and code generation
$0.0001
per 1,000 characters
Text data upload, training, deployment, prediction
$0.05
per hour
Video data training and prediction
$0.462
per node hour
Image data training, deployment, and prediction
$1.375
per node hour
Offerings
Pricing Offerings
DataRobotVertex AI
Free Trial
YesYes
Free/Freemium Version
YesYes
Premium Consulting/Integration Services
YesNo
Entry-level Setup FeeNo setup feeOptional
Additional DetailsPricing is based on the Vertex AI tools and services, storage, compute, and Google Cloud resources used.
More Pricing Information
Community Pulse
DataRobotVertex AI
Considered Both Products
DataRobot
Chose DataRobot
DataRobot is more friction-less and comprehensive enough to tackle a majority of our use cases.
Vertex AI

No answer on this topic

Top Pros

No answers on this topic

Top Cons

No answers on this topic

Best Alternatives
DataRobotVertex AI
Small Businesses
Saturn Cloud
Saturn Cloud
Score 8.1 out of 10
Saturn Cloud
Saturn Cloud
Score 8.1 out of 10
Medium-sized Companies

No answers on this topic

DataRobot
DataRobot
Score 8.6 out of 10
Enterprises

No answers on this topic

DataRobot
DataRobot
Score 8.6 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
DataRobotVertex AI
Likelihood to Recommend
8.4
(59 ratings)
7.3
(11 ratings)
Likelihood to Renew
6.3
(4 ratings)
-
(0 ratings)
Performance
-
(0 ratings)
7.2
(8 ratings)
Support Rating
8.2
(5 ratings)
-
(0 ratings)
Configurability
-
(0 ratings)
7.5
(8 ratings)
User Testimonials
DataRobotVertex AI
Likelihood to Recommend
DataRobot
DataRobot can be used for risk assessment, such as predicting the likelihood of loan default. It can handle both classification and regression tasks effectively. It relies on historical data for model training. If you have limited historical data or the data quality is poor, it may not be the best choice as it requires a sufficient amount of high-quality data for accurate model building.
Read full review
Google
We needed to build some ML models and Vertex AI is one such place where all the functionalities are consolidated for model deployment, tweaking and monitoring. And although it is costly, it is compatible with google cloud services and is scalable which makes it the perfect tool for us.
Read full review
Pros
DataRobot
  • DataRobot helps, with algorithms, to analyze and decipher numerous machine-learning techniques in order to provide models to assist in company-wide decision making.
  • Our DataRobot program puts on an "even playing field" the strength of auto-machine learning and allows us to make decisions in an extremely timely manner. The speed is consistent without being offset by errors or false-negatives.
  • It encompasses many desired techniques that help companies in general, to reconfigure in to artificial intelligence driven firms, with little to no inconvenience.
Read full review
Google
  • Vertex AI comes with support for LOTs of LLMs out of the box
  • MLOps tools are available that help to standardize operational aspects
  • Document AI is an out of the box feature that works just perfectly for our use cases of automating lots to tedious data extraction tasks from images as well as papers
Read full review
Cons
DataRobot
  • The platform itself is very complicated. It probably can't function well without being complicated, but there is a big training curve to get over before you can effectively use it. Even I'm not sure if I'm effectively using it now.
  • The suggested model DataRobot deploys often not the best model for our purposes. We've had to do a lot of testing to make sure what model is the best. For regressive models, DataRobot does give you a MASE score but, for some reason, often doesn't suggest the best MASE score model.
  • The software will give you errors if output files are not entered correctly but will not exactly tell you how to fix them. Perhaps that is complicated, but being able to download a template with your data for an output file in the correct format would be nice.
Read full review
Google
  • Customization of AutoML models - A must needed capability to be able to tweak hyperparameters and also working with different models
  • Model Explainability -Providing more comprehensive explanations about how models are utilizing features could be very beneficial
  • Model versioning and experiments tracking - Enhancing the versioning capability could be good for end users
Read full review
Likelihood to Renew
DataRobot
DataRobot presents a machine-learning platform designed by data scientists from an array of backgrounds, to construct and develop precise predictive modeling in a fraction of the time previously taken. The tech invloved addresses the critical shortage of data scientists by changing the speed and economics of predictive analytics. DataRobot utilizes parallel processing to evaluate models in R, Python, Spark MLlib, H2O and other open source databases. It searches for possible permutations and algorithms, features, transformation, processes, steps and tuning to yield the best models for the dataset and predictive goal.
Read full review
Google
No answers on this topic
Performance
DataRobot
No answers on this topic
Google
Vertex AI is very user friendly and it is very fast. We can spin up instances pretty quickly and it allows to work with GPU instances without much planning. Pages load up very quickly and tasks are competed pretty much in time frame. It integrates with other systems also very well.
Read full review
Support Rating
DataRobot
As I am writing this report I am participating with Datarobot Engineers in an complex environment and we have their whole support. We are in Mexico and is not common to have this commitment from companies without expensive contract services. Installing is on premise and the client does not want us to take control and they, the client, is also limited because of internal IT regulations ,,, soo we are just doing magic and everybody is committed.
Read full review
Google
No answers on this topic
Alternatives Considered
DataRobot
I've done machine learning through python before, however having to code and test each model individually was very time consuming and required a lot of expertise. The data Robot approach, is an excellent way of getting to a well placed starting point. You can then pick up the model from there and fine tune further if you need.
Read full review
Google
Vertex AI is much more accessible to non-developers than IBM's product. Moreover, Vertex AI integrates well with other Google products, enhancing its capabilities. A big plus is its integration with cloud storage, that allows for better management and access of data. In all honesty, it wasn't much of a difficult choice to choose Vertex AI.
Read full review
Return on Investment
DataRobot
  • We have been able to cut costs by not buying leads that we will not be able to sell on
  • We have been able to deploy loan eligibility reporting which brought in new business
  • We have been able to improve the performance of our credit providers and our partners which has helped to retain business
Read full review
Google
  • It is pay as you go model so it'll save more cost of your org. In our case previously we used to incurred 1-2L/Month now we are reduced it to 80k-1L.
  • It'll help you save your model training & model selection time as it provides pre-trained models in autoML.
  • It'll help you in terms of Security wherein we can use row level security access to authorized persons.
Read full review
ScreenShots

DataRobot Screenshots

Screenshot of Decision FlowsScreenshot of No Code App BuilderScreenshot of AI AppsScreenshot of Automated Time SeriesScreenshot of MLOpsScreenshot of Model Insights

Vertex AI Screenshots

Screenshot of an introduction to generative AI on Vertex AI - Vertex AI Studio offers a Google Cloud console tool for rapidly prototyping and testing generative AI models.Screenshot of gen AI for summarization, classification, and extraction - Text prompts can be created to handle any number of tasks with Vertex AI’s generative AI support. Some of the most common tasks are classification, summarization, and extraction. Vertex AI’s PaLM API for text can be used to design prompts with flexibility in terms of their structure and format.Screenshot of Custom ML training overview and documentation - An overview of the custom training workflow in Vertex AI, the benefits of custom training, and the various training options that are available. This page also details every step involved in the ML training workflow from preparing data to predictions.Screenshot of ML model training and creation -  A guide that shows how Vertex AI’s AutoML is used to create and train custom machine learning models with minimal effort and machine learning expertise.Screenshot of deployment for batch or online predictions - When using a model to solve a real-world problem, the Vertex AI prediction service can be used for batch and online predictions.