Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Oracle Autonomous Data Warehouse
Score 9.0 out of 10
N/A
Oracle Autonomous Data Warehouse is optimized for analytic workloads, including data marts, data warehouses, data lakes, and data lakehouses. With Autonomous Data Warehouse, data scientists, business analysts, and nonexperts can discover business insights using data of any size and type. The solution is built for the cloud and optimized using Oracle Exadata.
Event-based data can be captured seamlessly from our data layers (and exported to Google BigQuery). When events like page-views, clicks, add-to-cart are tracked, Google BigQuery can help efficiently with running queries to observe patterns in user behaviour. That intermediate step of trying to "untangle" event data is resolved by Google BigQuery. A scenario where it could possibly be less appropriate is when analysing "granular" details (like small changes to a database happening very frequently).
II would recommend Oracle Autonomous Data Warehouse to someone looking to fully automate the transferring of data especially in a warehouse scenario though I can see the elasticity of the suite that is offered and can see it is applicable in other scenarios not just warehouses.
GSheet data can be linked to a BigQuery table and the data in that sheet is ingested in realtime into BigQuery. It's a live 'sync' which means it supports insertions, deletions, and alterations. The only limitation here is the schema'; this remains static once the table is created.
Seamless integration with other GCP products.
A simple pipeline might look like this:-
GForms -> GSheets -> BigQuery -> Looker
It all links up really well and with ease.
One instance holds many projects.
Separating data into datamarts or datameshes is really easy in BigQuery, since one BigQuery instance can hold multiple projects; which are isolated collections of datasets.
Very easy and fast to load data into the Oracle Autonomous Data Warehouse
Exceptionally fast retrieval of data joining 100 million row table with a billion row table plus the size of the database was reduced by a factor of 10 due to how Oracle store[s] and organise[s] data and indexes.
Flexibility with scaling up and down CPU on the fly when needed, and just stop it when not needed so you don't get charged when it is not running.
It is always patched and always available and you can add storage dynamically as you need it.
Please expand the availability of documentation, tutorials, and community forums to provide developers with comprehensive support and guidance on using Google BigQuery effectively for their projects.
If possible, simplify the pricing model and provide clearer cost breakdowns to help users understand and plan for expenses when using Google BigQuery. Also, some cost reduction is welcome.
It still misses the process of importing data into Google BigQuery. Probably, by improving compatibility with different data formats and sources and reducing the complexity of data ingestion workflows, it can be made to work.
It is very expensive product. But not to mention, there's good reasons why it is expensive.
The product should support more cloud based services. When we made the decision to buy the product (which was 20 years ago,) there was no such thing to consider, but moving to a cloud based data warehouse may promise more scalability, agility, and cost reduction. The new version of Data Warehouse came out on the way, but it looks a bit behind compared to other competitors.
Our healthcare data consists of 30% coded data (such as ICD 10 / SNOMED C,T) but the rests is narrative (such as clinical notes.). Oracle is the best for warehousing standardized data, but not a good choice when considering unstructured data, or a mix of the two.
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Does not require continous attention from the DBA, autonomous features allows the database to perform most of the regular admin tasks without need for human intervention.
Allows to integrate multiple data sources on a central data warehouse, and explode the information stored with different analytic and reporting tools.
I think overall it is easy to use. I haven't done anything from the development side but an more of an end user of reporting tables built in Google BigQuery. I connect data visualization tools like Tableau or Power BI to the BigQuery reporting tables to analyze trends and create complex dashboards.
I have never had any significant issues with Google Big Query. It always seems to be up and running properly when I need it. I cannot recall any times where I received any kind of application errors or unplanned outages. If there were any they were resolved quickly by my IT team so I didn't notice them.
I think Google Big Query's performance is in the acceptable range. Sometimes larger datasets are somewhat sluggish to load but for most of our applications it performs at a reasonable speed. We do have some reports that include a lot of complex calculations and others that run on granular store level data that so sometimes take a bit longer to load which can be frustrating.
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Understanding Oracle Cloud Infrastructure is really simple, and Autonomous databases are even more. Using shared or dedicated infrastructure is one of the few things you need to consider at the moment of starting provisioning your Oracle Autonomous Data Warehouse.
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
As I mentioned, I have also worked with Amazon Redshift, but it is not as versatile as Oracle Autonomous Data Warehouse and does not provide a large variety of products. Oracle Autonomous Data Warehouse is also more reliable than Amazon Redshift, hence why I have chosen it
We have continued to expand out use of Google Big Query over the years. I'd say its flexibility and scalability is actually quite good. It also integrates well with other tools like Tableau and Power BI. It has served the needs of multiple data sources across multiple departments within my company.
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Overall the business objective of all of our clients have been met positively with Oracle Data Warehouse. All of the required analysis the users were able to successfully carry out using the warehouse data.
Using a 3-tier architecture with the Oracle Data Warehouse at the back end the mid-tier has been integrated well. This is big plus in providing the necessary tools for end users of the data warehouse to carry out their analysis.
All of the various BI products (OBIEE, Cognos, etc.) are able to use and exploit the various analytic built-in functionalities of the Oracle Data Warehouse.