IBM SPSS Modeler vs. Keras

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
IBM SPSS Modeler
Score 9.0 out of 10
N/A
IBM SPSS Modeler is a visual data science and machine learning (ML) solution designed to help enterprises accelerate time to value by speeding up operational tasks for data scientists. Organizations can use it for data preparation and discovery, predictive analytics, model management and deployment, and ML to monetize data assets.
$499
per month
Keras
Score 7.0 out of 10
N/A
Keras is a Python deep learning libraryN/A
Pricing
IBM SPSS ModelerKeras
Editions & Modules
IBM SPSS Modeler Personal
4,670
per year
IBM SPSS Modeler Professional
7,000
per year
IBM SPSS Modeler Premium
11,600
per year
IBM SPSS Modeler Gold
contact IBM
per year
No answers on this topic
Offerings
Pricing Offerings
IBM SPSS ModelerKeras
Free Trial
YesNo
Free/Freemium Version
NoNo
Premium Consulting/Integration Services
YesNo
Entry-level Setup FeeOptionalNo setup fee
Additional DetailsIBM SPSS Modeler Personal enables users to design and build predictive models right from the desktop. IBM SPSS Modeler Professional extends SPSS Modeler Personal with enterprise-scale in-database mining, SQL pushback, collaboration and deployment, champion/challenger, A/B testing, and more. IBM SPSS Modeler Premium extends SPSS Modeler Professional by including unstructured data analysis with integrated, natural language text and entity and social network analytics. IBM SPSS Modeler Gold extends SPSS Modeler Premium with the ability to build and deploy predictive models directly into the business process to aid in decision making. This is achieved with Decision Management which combines predictive analytics with rules, scoring, and optimization to deliver recommended actions at the point of impact.
More Pricing Information
Community Pulse
IBM SPSS ModelerKeras
Features
IBM SPSS ModelerKeras
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
IBM SPSS Modeler
8.6
2 Ratings
3% above category average
Keras
-
Ratings
Connect to Multiple Data Sources8.32 Ratings00 Ratings
Extend Existing Data Sources8.32 Ratings00 Ratings
Automatic Data Format Detection9.01 Ratings00 Ratings
MDM Integration9.01 Ratings00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
IBM SPSS Modeler
9.0
1 Ratings
6% above category average
Keras
-
Ratings
Visualization9.01 Ratings00 Ratings
Interactive Data Analysis9.01 Ratings00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
IBM SPSS Modeler
9.0
1 Ratings
10% above category average
Keras
-
Ratings
Interactive Data Cleaning and Enrichment9.01 Ratings00 Ratings
Data Transformations9.01 Ratings00 Ratings
Data Encryption9.01 Ratings00 Ratings
Built-in Processors9.01 Ratings00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
IBM SPSS Modeler
9.0
1 Ratings
7% above category average
Keras
-
Ratings
Multiple Model Development Languages and Tools9.01 Ratings00 Ratings
Automated Machine Learning9.01 Ratings00 Ratings
Single platform for multiple model development9.01 Ratings00 Ratings
Self-Service Model Delivery9.01 Ratings00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
IBM SPSS Modeler
9.0
1 Ratings
6% above category average
Keras
-
Ratings
Flexible Model Publishing Options9.01 Ratings00 Ratings
Security, Governance, and Cost Controls9.01 Ratings00 Ratings
Best Alternatives
IBM SPSS ModelerKeras
Small Businesses
Jupyter Notebook
Jupyter Notebook
Score 8.6 out of 10
InterSystems IRIS
InterSystems IRIS
Score 7.8 out of 10
Medium-sized Companies
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
Enterprises
Posit
Posit
Score 10.0 out of 10
Posit
Posit
Score 10.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
IBM SPSS ModelerKeras
Likelihood to Recommend
8.9
(8 ratings)
8.1
(6 ratings)
Usability
8.6
(2 ratings)
7.7
(2 ratings)
Support Rating
10.0
(1 ratings)
8.2
(2 ratings)
User Testimonials
IBM SPSS ModelerKeras
Likelihood to Recommend
IBM
Fast NLP analytics are very easy in SPSS Modeler because there is a built-in interface for classifying concepts and themes and several pre-built models to match the incoming text source. The visualizations all match and help present NLP information without substantial coding, typically required for word clouds and such. SPSS Modeler is good at attaining results faster in general, and the visual nature of the code makes a good tool to have in the data science team's repository. For younger data scientists, and those just interested, it is a good tool to allow for exploring data science techniques.
Read full review
Open Source
Keras is quite perfect, if the aim is to build the standard Deep Learning model, and materialize it to serve the real business use case, while it is not suitable if the purpose is for research and a lot of non-standard try out and customization are required, in that case either directly goes to low level TensorFlow API or Pytorch
Read full review
Pros
IBM
  • Combine text and data
  • Provide facilities for all phases of the data mining process.
  • Use a node and stream paradigm to easily and quickly create models.
Read full review
Open Source
  • One of the reason to use Keras is that it is easy to use. Implementing neural network is very easy in this, with just one line of code we can add one layer in the neural network with all it's configurations.
  • It provides lot of inbuilt thing like cov2d, conv2D, maxPooling layers. So it makes fast development as you don't need to write everything on your own. It comes with lot of data processing libraries in it like one hot encoder which also makes your development easy and fast.
  • It also provides functionality to develop models on mobile device.
Read full review
Cons
IBM
  • Has very old style graphs, with lots of limitations.
  • Some advanced statistical functions cannot be done through the menu.
  • The data connectivity is not that extensive.
  • It's an expensive tool.
Read full review
Open Source
  • As it is a kind of wrapper library it won't allow you to modify everything of its backend
  • Unlike other deep learning libraries, it lacks a pre-defined trained model to use
  • Errors thrown are not always very useful for debugging. Sometimes it is difficult to know the root cause just with the logs
Read full review
Usability
IBM
The ability to do predictive modeling, text analytics for both structured & unstructured data, decision management, optimization, and support for various data sources
Read full review
Open Source
I am giving this rating depending on my experience so far with Keras, I didn't face any issue far. I would like to recommend it to the new developers.
Read full review
Support Rating
IBM
The online support board is helpful and the free add ons are incredibly appreciated.
Read full review
Open Source
Keras have really good support along with the strong community over the internet. So in case you stuck, It won't so hard to get out from it.
Read full review
Alternatives Considered
IBM
When it comes to investigation and descriptive we have found SPSS Statistics to be the tool of choice, but when it comes to projects with large and several datasets SPSS Modeler has been picked from our customers.
Read full review
Open Source
Keras is good to develop deep learning models. As compared to TensorFlow, it's easy to write code in Keras. You have more power with TensorFlow but also have a high error rate because you have to configure everything by your own. And as compared to MATLAB, I will always prefer Keras as it is easy and powerful as well.
Read full review
Return on Investment
IBM
  • Positive - Ease of decision making and reduction in product life cycle time.
  • Positive - Gives entirely new perspective with the help of right team. Helps expanding the portfolio.
  • Negative - Needs to have good understanding about mathematical modelling, of which talent is rare and expensive. Hence, increase the costs for R&D and manpower.
Read full review
Open Source
  • Easy and faster way to develop neural network.
  • It would be much better if it is available in Java.
  • It doesn't allow you to modify the internal things.
Read full review
ScreenShots

IBM SPSS Modeler Screenshots

Screenshot of Use a single run to test multiple modeling methods, compare results and select which model to deploy. Quickly choose the best performing algorithm based on model performance.Screenshot of Explore geographic data, such as latitude and longitude, postal codes and addresses. Combine it with current and historical data for better insights and predictive accuracy.Screenshot of Capture key concepts, themes, sentiments and trends by analyzing unstructured text data. Uncover insights in web activity, blog content, customer feedback, emails and social media comments.Screenshot of Use R, Python, Spark, Hadoop and other open source technologies to amplify the power of your analytics. Extend and complement these technologies for more advanced analytics while you keep control.