MySQL is best suited for applications on platform like high-traffic content-driven websites, small-scale web apps, data warehouses which regards light analytical workloads. However its less suited for areas like enterprise data warehouse, OLAP cubes, large-scale reporting, applications requiring flexible or semi-structured data like event logging systems, product configurations, dynamic forms.
Titan is definitely a good choice, but it has its learning curve. The documentation may lack in places, and you might have to muster answers from different sources and technologies. But at its core, it does the job of storing and querying graph databases really well. Remember that titan itself is not the whole component, but utilizes other technologies like cassandra, gremlin, tinkerpop, etc to do many other things, and each of them has a learning curve. I would recommend titan for a team, but not for a single person. For single developer, go with Neo4j.
Learning curve: is big. Newbies will face problems in understanding the platform initially. However, with plenty of online resources, one can easily find solutions to problems and learn on the go.
Backup and restore: MySQL is not very seamless. Although the data is never ruptured or missed, the process involved is not very much user-friendly. Maybe, a new command-line interface for only the backup-restore functionality shall be set up again to make this very important step much easier to perform and maintain.
The community is lacking deep documentation. I had to spend many nights trying to figure many things on my own. As graph databases will grow popular, I am sure this will be improved.
Not enough community support. Even in SO you might not find many questions. Though there are some users in SO who quickly answer graph database questions. Need more support.
For teaching Databases and SQL, I would definitely continue to use MySQL. It provides a good, solid foundation to learn about databases. Also to learn about the SQL language and how it works with the creation, insertion, deletion, updating, and manipulation of data, tables, and databases. This SQL language is a foundation and can be used to learn many other database related concepts.
I give MySQL a 9/10 overall because I really like it but I feel like there are a lot of tech people who would hate it if I gave it a 10/10. I've never had any problems with it or reached any of its limitations but I know a few people who have so I can't give it a 10/10 based on those complaints.
We have never contacted MySQL enterprise support team for any issues related to MySQL. This is because we have been using primarily the MySQL Server community edition and have been using the MySQL support forums for any questions and practical guidance that we needed before and during the technical implementations. Overall, the support community has been very helpful and allowed us to make the most out of the community edition.
MongoDB has a dynamic schema for how data is stored in 'documents' whereas MySQL is more structured with tables, columns, and rows. MongoDB was built for high availability whereas MySQL can be a challenge when it comes to replication of the data and making everything redundant in the event of a DR or outage.
To be honest, titan is not as popular as Neo4j, though they do the same thing. In my personal opinion, titan has lot of potential, but Neo4j is easier to use. If the organization is big enough, it might choose titan because of its open source nature, and high scalability, but Neo4j comes with a lot of enterprise and community support, better query, better documentation, better instructions, and is also backed by leading tech companies. But titan is very strong when you consider standards. Titan follows gremlin and tinkerpop, both of which will be huge in future as more graph database vendors join the market. If things go really well, maybe Neo4j might have to support gremlin as well.