PyCharm is an extensive Integrated
Development Environment (IDE) for Python developers. Its
arsenal includes intelligent code completion, error detection, and rapid
problem-solving features, all of which aim to bolster efficiency. The product supports programmers in composing orderly and maintainable
code by offering PEP8 checks, testing assistance, intelligent refactorings, and
inspections. Moreover, it caters to web development frameworks like Django and
Flask by providing framework…
$9.90
per month per user
Pytorch
Score 9.3 out of 10
N/A
Pytorch is an open source machine learning (ML) framework boasting a rich ecosystem of tools and libraries that extend PyTorch and support development in computer vision, NLP and or that supports other ML goals.
N/A
Pricing
PyCharm
Pytorch
Editions & Modules
For Individuals
$99
per year per user
All Products Pack for Organizations
$249
per year per user
All Products Pack for Individuals
$289
per year per user
For Organizations
$779
per year per user
No answers on this topic
Offerings
Pricing Offerings
PyCharm
Pytorch
Free Trial
Yes
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
PyCharm
Pytorch
Considered Both Products
PyCharm
No answer on this topic
Pytorch
Verified User
Engineer
Chose Pytorch
Saving and loading Machine/Deep Learning models is very easy with Pytorch. It provides visualization capabilities when combined with Tensorboard, and mathematical operations are highly optimized. Easy to understand for a person who is an expert in Python. It takes significantly …
PyCharm is well suited to developing and deploying Python applications in the cloud using Kubernetes or serverless pipelines. The integration with GitLab is great; merges and rebates are easily done and help the developer move quickly. The search engine that allows you to search inside your code is also great. It is less appropriate for other languages.
They have created Pytorch Lightening on top of Pytorch to make the life of Data Scientists easy so that they can use complex models they need with just a few lines of code, so it's becoming popular. As compared to TensorFlow(Keras), where we can create custom neural networks by just adding layers, it's slightly complicated in Pytorch.
Git integration is really essential as it allows anyone to visually see the local and remote changes, compare revisions without the need for complex commands.
Complex debugging tools are basked into the IDE. Controls like break on exception are sometimes very helpful to identify errors quickly.
Multiple runtimes - Python, Flask, Django, Docker are native the to IDE. This makes development and debugging and even more seamless.
Integrates with Jupyter and Markdown files as well. Side by side rendering and editing makes it simple to develop such files.
The biggest complaint I have about PyCharm is that it can use a lot of RAM which slows down the computer / IDE. I use the paid version, and have otherwise found nothing to complain about the interface, utility, and capabilities.
It's pretty easy to use, but if it's your first time using it, you need time to adapt. Nevertheless, it has a lot of options, and everything is pretty easy to find. The console has a lot of advantages and lets you accelerate your development from the first day.
The big advantage of PyTorch is how close it is to the algorithm. Oftentimes, it is easier to read Pytorch code than a given paper directly. I particularly like the object-oriented approach in model definition; it makes things very clean and easy to teach to software engineers.
I rate 10/10 because I have never needed a direct customer support from the JetBrains so far. Whenever and for whatever kind of problems I came across, I have been able to resolve it within the internet community, simply by Googling because turns out most of the time, it was me who lacked the proper information to use the IDE or simply make the proper configuration. I have never came across a bug in PyCharm either so it deserves 10/10 for overall support
When it comes to development and debugging PyCharm is better than Spyder as it provides good debugging support and top-quality code completion suggestions. Compared to Jupiter notebook it's easy to install required packages in PyCharm, also PyChram is a good option when we want to write production-grade code because it provides required suggestions.
Pytorch is very, very simple compared to TensorFlow. Simple to install, less dependency issues, and very small learning curve. TensorFlow is very much optimised for robust deployment but very complicated to train simple models and play around with the loss functions. It needs a lot of juggling around with the documentation. The research community also prefers PyTorch, so it becomes easy to find solutions to most of the problems. Keras is very simple and good for learning ML / DL. But when going deep into research or building some product that requires a lot of tweaks and experimentation, Keras is not suitable for that. May be good for proving some hypotheses but not good for rigorous experimentation with complex models.