Anaconda vs. Databricks Data Intelligence Platform

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Anaconda
Score 8.4 out of 10
N/A
Anaconda provides access to the foundational open-source Python and R packages used in modern AI, data science, and machine learning. These enterprise-grade solutions enable corporate, research, and academic institutions around the world to harness open-source for competitive advantage and research. Anaconda also provides enterprise-grade security to open-source software through the Premium Repository.
$0
per month
Databricks Data Intelligence Platform
Score 8.7 out of 10
N/A
Databricks in San Francisco offers the Databricks Lakehouse Platform (formerly the Unified Analytics Platform), a data science platform and Apache Spark cluster manager. The Databricks Unified Data Service aims to provide a reliable and scalable platform for data pipelines, data lakes, and data platforms. Users can manage full data journey, to ingest, process, store, and expose data throughout an organization. Its Data Science Workspace is a collaborative environment for practitioners to run…
$0.07
Per DBU
Pricing
AnacondaDatabricks Data Intelligence Platform
Editions & Modules
Free Tier
$0
per month
Starter Tier
$9
per month
Business Tier
$50
per month per user
Enterprise Tier
60.00+
per month per user
Standard
$0.07
Per DBU
Premium
$0.10
Per DBU
Enterprise
$0.13
Per DBU
Offerings
Pricing Offerings
AnacondaDatabricks Data Intelligence Platform
Free Trial
NoNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
YesNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
AnacondaDatabricks Data Intelligence Platform
Top Pros
Top Cons
Features
AnacondaDatabricks Data Intelligence Platform
Platform Connectivity
Comparison of Platform Connectivity features of Product A and Product B
Anaconda
9.3
25 Ratings
10% above category average
Databricks Data Intelligence Platform
-
Ratings
Connect to Multiple Data Sources9.822 Ratings00 Ratings
Extend Existing Data Sources8.024 Ratings00 Ratings
Automatic Data Format Detection9.721 Ratings00 Ratings
MDM Integration9.614 Ratings00 Ratings
Data Exploration
Comparison of Data Exploration features of Product A and Product B
Anaconda
8.5
25 Ratings
1% above category average
Databricks Data Intelligence Platform
-
Ratings
Visualization9.025 Ratings00 Ratings
Interactive Data Analysis8.024 Ratings00 Ratings
Data Preparation
Comparison of Data Preparation features of Product A and Product B
Anaconda
9.0
26 Ratings
9% above category average
Databricks Data Intelligence Platform
-
Ratings
Interactive Data Cleaning and Enrichment8.823 Ratings00 Ratings
Data Transformations8.026 Ratings00 Ratings
Data Encryption9.719 Ratings00 Ratings
Built-in Processors9.620 Ratings00 Ratings
Platform Data Modeling
Comparison of Platform Data Modeling features of Product A and Product B
Anaconda
9.2
24 Ratings
8% above category average
Databricks Data Intelligence Platform
-
Ratings
Multiple Model Development Languages and Tools9.023 Ratings00 Ratings
Automated Machine Learning8.921 Ratings00 Ratings
Single platform for multiple model development10.024 Ratings00 Ratings
Self-Service Model Delivery9.019 Ratings00 Ratings
Model Deployment
Comparison of Model Deployment features of Product A and Product B
Anaconda
9.5
21 Ratings
10% above category average
Databricks Data Intelligence Platform
-
Ratings
Flexible Model Publishing Options10.021 Ratings00 Ratings
Security, Governance, and Cost Controls9.020 Ratings00 Ratings
Best Alternatives
AnacondaDatabricks Data Intelligence Platform
Small Businesses
Jupyter Notebook
Jupyter Notebook
Score 8.9 out of 10

No answers on this topic

Medium-sized Companies
Posit
Posit
Score 9.8 out of 10
Amazon Athena
Amazon Athena
Score 9.0 out of 10
Enterprises
Posit
Posit
Score 9.8 out of 10
Amazon Athena
Amazon Athena
Score 9.0 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
AnacondaDatabricks Data Intelligence Platform
Likelihood to Recommend
10.0
(38 ratings)
10.0
(18 ratings)
Likelihood to Renew
7.0
(1 ratings)
-
(0 ratings)
Usability
9.0
(3 ratings)
10.0
(4 ratings)
Support Rating
8.9
(9 ratings)
8.7
(2 ratings)
Contract Terms and Pricing Model
-
(0 ratings)
8.0
(1 ratings)
Professional Services
-
(0 ratings)
10.0
(1 ratings)
User Testimonials
AnacondaDatabricks Data Intelligence Platform
Likelihood to Recommend
Anaconda
I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
Read full review
Databricks
Medium to Large data throughput shops will benefit the most from Databricks Spark processing. Smaller use cases may find the barrier to entry a bit too high for casual use cases. Some of the overhead to kicking off a Spark compute job can actually lead to your workloads taking longer, but past a certain point the performance returns cannot be beat.
Read full review
Pros
Anaconda
  • Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc.
  • Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily.
  • Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money.
Read full review
Databricks
  • Process raw data in One Lake (S3) env to relational tables and views
  • Share notebooks with our business analysts so that they can use the queries and generate value out of the data
  • Try out PySpark and Spark SQL queries on raw data before using them in our Spark jobs
  • Modern day ETL operations made easy using Databricks. Provide access mechanism for different set of customers
Read full review
Cons
Anaconda
  • It can have a cloud interface to store the work.
  • Compatible for large size files.
  • I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made.
Read full review
Databricks
  • Connect my local code in Visual code to my Databricks Lakehouse Platform cluster so I can run the code on the cluster. The old databricks-connect approach has many bugs and is hard to set up. The new Databricks Lakehouse Platform extension on Visual Code, doesn't allow the developers to debug their code line by line (only we can run the code).
  • Maybe have a specific Databricks Lakehouse Platform IDE that can be used by Databricks Lakehouse Platform users to develop locally.
  • Visualization in MLFLOW experiment can be enhanced
Read full review
Likelihood to Renew
Anaconda
It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
Read full review
Databricks
No answers on this topic
Usability
Anaconda
I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
Read full review
Databricks
Because it is an amazing platform for designing experiments and delivering a deep dive analysis that requires execution of highly complex queries, as well as it allows to share the information and insights across the company with their shared workspaces, while keeping it secured.

in terms of graph generation and interaction it could improve their UI and UX
Read full review
Support Rating
Anaconda
Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
Read full review
Databricks
One of the best customer and technology support that I have ever experienced in my career. You pay for what you get and you get the Rolls Royce. It reminds me of the customer support of SAS in the 2000s when the tools were reaching some limits and their engineer wanted to know more about what we were doing, long before "data science" was even a name. Databricks truly embraces the partnership with their customer and help them on any given challenge.
Read full review
Alternatives Considered
Anaconda
I have experience using RStudio oustide of Anaconda. RStudio can be installed via anaconda, but I like to use RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both RStudio and Anaconda, I like installing R packages via RStudio. However, for anything python-related, Anaconda is my go to!
Read full review
Databricks
The most important differentiating factor for Databricks Lakehouse Platform from these other platforms is support for ACID transactions and the time travel feature. Also, native integration with managed MLflow is a plus. EMR, Cloudera, and Hortonworks are not as optimized when it comes to Spark Job Execution. Other platforms need to be self-managed, which is another huge hassle.
Read full review
Return on Investment
Anaconda
  • It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over.
  • By having an easy access and immediate use of libraries, developing times has decreased more than 20 %
  • There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda.
Read full review
Databricks
  • The ability to spin up a BIG Data platform with little infrastructure overhead allows us to focus on business value not admin
  • DB has the ability to terminate/time out instances which helps manage cost.
  • The ability to quickly access typical hard to build data scenarios easily is a strength.
Read full review
ScreenShots