Anaconda provides access to the foundational open-source Python and R packages used in modern AI, data science, and machine learning. These enterprise-grade solutions enable corporate, research, and academic institutions around the world to harness open-source for competitive advantage and research. Anaconda also provides enterprise-grade security to open-source software through the Premium Repository.
$0
per month
KNIME Analytics Platform
Score 8.4 out of 10
N/A
KNIME enables users to analyze, upskill, and scale data science without any coding. The platform that lets users blend, transform, model and visualize data, deploy and monitor analytical models, and share insights organization-wide with data apps and services.
$0
per month
Pricing
Anaconda
KNIME Analytics Platform
Editions & Modules
Free Tier
$0
per month
Starter Tier
$9
per month
Business Tier
$50
per month per user
Enterprise Tier
60.00+
per month per user
KNIME Community Hub Personal Plan
$0
KNIME Analytics Platform
$0
KNIME Community Hub Team Plan
€99
per month 3 users
KNIME Business Hub
From €35,000
per year
Offerings
Pricing Offerings
Anaconda
KNIME Analytics Platform
Free Trial
No
No
Free/Freemium Version
Yes
Yes
Premium Consulting/Integration Services
Yes
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Anaconda
KNIME Analytics Platform
Considered Both Products
Anaconda
Verified User
Professional
Chose Anaconda
Anaconda gives freedom to do anything with its packages, compared to other non-programming language-based softwares. It is almost possible to do anything with Anaconda. Anaconda brings ease of integrity because it is possible to integrate anything with a Python Py script, …
KNIME Analytics Platform
Verified User
Professional
Chose KNIME Analytics Platform
Comparing the KNIME Analytics Platform to Anaconda and MATLAB, KNIME Analytics Platform's upsides are ease of use thanks to graphical interface and intuitiveness, no requirement of programming/coding and pre-existing nodes. Anybody can use it and create models even though …
Alteryx is a very similar product, almost all the things that are achievable in KNIME Analytics Platform can be done in Alteryx as well, but you have to pay for the Desktop version to conduct the analysis. But with KNIME Analytics Platform it is totally free and can be used …
Verified User
Manager
Chose KNIME Analytics Platform
As a commercial product Alteryx is more polished and can be even easier for a beginner, but KNIME beats Alteryx in functionality and performance. Dataiku takes the integration with Python and Git further than KNIME but isn't at the level of Alteryx and KNIME with its No …
There are two aspects which put KNIME Analytics Platform ahead of other products. Firstly the fact that KNIME Analytics Platform comes at no cost and no restrictions on its use is an instant winner for any organisation wanting to democratise their data. It means that a client …
Data Scientist - Biotech Data Science Digtialization (BDSD)
Chose KNIME Analytics Platform
KNIME Analytics Platform has a nice visualization comparing to Azure Machine Learning Studio. KNIME also has a good amount of built-in preprocessing nodes and ML training nodes that makes it easier to develop workflow instead of writing codes. However this also limits the …
We need to use SAS/STAT package within SAS to use the advanced statistical functions, but KNIME has inbuilt libraries for the same. Also, the integration with Open source (Python, R, Java codes) allows better scalability & more availability of skilled resources to work upon.
I have asked all my juniors to work with Anaconda and Pycharm only, as this is the best combination for now. Coming to use cases: 1. When you have multiple applications using multiple Python variants, it is a really good tool instead of Venv (I never like it). 2. If you have to work on multiple tools and you are someone who needs to work on data analytics, development, and machine learning, this is good. 3. If you have to work with both R and Python, then also this is a good tool, and it provides support for both.
KNIME Analytics Platform is excellent for people who are finding Excel frustrating, this can be due to errors creeping in due to manual changes or simply that there are too many calculations which causes the system to slow down and crash. This is especially true for regular reporting where a KNIME Analytics Platform workflow can pull in the most recent data, process it and provide the necessary output in one click. I find KNIME Analytics Platform especially useful when talking with audiences who are intimidated by code. KNIME Analytics Platform allows us to discuss exactly how data is processed and an analysis takes place at an abstracted level where non-technical users are happy to think and communicate which is often essential when they are subject matter experts whom you need for guidance. For experienced programmers KNIME Analytics Platform is a double-edged sword. Often programmers wish to write their own code because they are more efficient working that way and are constrained by having to think and implement work in nodes. However, those constraints forcing development in a "KNIME way" are useful when working in teams and for maintenance compared to some programmers' idiosyncratic styles.
Anaconda is a one-stop destination for important data science and programming tools such as Jupyter, Spider, R etc.
Anaconda command prompt gave flexibility to use and install multiple libraries in Python easily.
Jupyter Notebook, a famous Anaconda product is still one of the best and easy to use product for students like me out there who want to practice coding without spending too much money.
I used R Studio for building Machine Learning models, Many times when I tried to run the entire code together the software would crash. It would lead to loss of data and changes I made.
It's really good at data processing, but needs to grow more in publishing in a way that a non-programmer can interact with. It also introduces confusion for programmers that are familiar with normal Python processes which are slightly different in Anaconda such as virtualenvs.
We are happy with Knime product and their support. Knime AP is versatile product and even can execute Python scripts if needed. It also supports R execution as well; however, it is not being used at our end
I am giving this rating because I have been using this tool since 2017, and I was in college at that time. Initially, I hesitated to use it as I was not very aware of the workings of Python and how difficult it is to manage its dependency from project to project. Anaconda really helped me with that. The first machine-learning model that I deployed on the Live server was with Anaconda only. It was so managed that I only installed libraries from the requirement.txt file, and it started working. There was no need to manually install cuda or tensor flow as it was a very difficult job at that time. Graphical data modeling also provides tools for it, and they can be easily saved to the system and used anywhere.
KNIME Analytics Platform offers a great tradeoff between intuitiveness and simplicity of the user interface and almost limitless flexibility. There are tools that are even easier to adopt by someone new to analytics, but none that would provide the scalability of KNIME when the user skills and application complexity grows
Anaconda provides fast support, and a large number of users moderate its online community. This enables any questions you may have to be answered in a timely fashion, regardless of the topic. The fact that it is based in a Python environment only adds to the size of the online community.
KNIME's HQ is in Europe, which makes it hard for US companies to get customer service in time and on time. Their customer service also takes on average 1 to 2 weeks to follow up with your request. KNIME's documentation is also helpful but it does not provide you all the answers you need some of the time.
KNIME Analytics Platform is easy to install on any Windows, Mac or Linux machine. The KNIME Server product that is currently being replaced by the KNIME Business Hub comes as multiple layers of software and it took us some time to set up the system right for stability. This was made harder by KNIME staff's deeper expertise in setting up the Server in Linux rather than Windows environment. The KNIME Business Hub promises to have a simpler architecture, although currently there is no visibility of a Windows version of the product.
I have experience using RStudio oustide of Anaconda. RStudio can be installed via anaconda, but I like to use RStudio separate from Anaconda when I am worin in R. I tend to use Anaconda for python and RStudio for working in R. Although installing libraries and packages can sometimes be tricky with both RStudio and Anaconda, I like installing R packages via RStudio. However, for anything python-related, Anaconda is my go to!
Having used both the Alteryx and [KNIME Analytics] I can definitely feel the ease of using the software of Alteryx. The [KNIME Analytics] on the other hand isn't that great but is 90% of what Alteryx can do along with how much ease it can do. Having said that, the 90% functionality and UI at no cost would be enough for me to quit using Alteryx and move towards [KNIME Analytics].
It has helped our organization to work collectively faster by using Anaconda's collaborative capabilities and adding other collaboration tools over.
By having an easy access and immediate use of libraries, developing times has decreased more than 20 %
There's an enormous data scientist shortage. Since Anaconda is very easy to use, we have to be able to convert several professionals into the data scientist. This is especially true for an economist, and this my case. I convert myself to Data Scientist thanks to my econometrics knowledge applied with Anaconda.
It is suited for data mining or machine learning work but If we're looking for advanced stat methods such as mixed effects linear/logistics models, that needs to be run through an R node.
Thinking of our peers with an advanced visualization techniques requirement, it is a lagging product.