Likelihood to Recommend Apache Cassandra is a NoSQL database and well suited where you need highly available, linearly scalable, tunable consistency and high performance across varying workloads. It has worked well for our use cases, and I shared my experiences to use it effectively at the last Cassandra summit!
http://bit.ly/1Ok56TK It is a NoSQL database, finally you can tune it to be strongly consistent and successfully use it as such. However those are not usual patterns, as you negotiate on latency. It works well if you require that. If your use case needs strongly consistent environments with semantics of a relational database or if the use case needs a data warehouse, or if you need NoSQL with ACID transactions, Apache Cassandra may not be the optimum choice.
Read full review It is well organized. One can use it for the company's portfolio management. Various tasks can be done for managerial purposes. One can track the material from start to end product: for example, raw material, packing material & consumable material to formulated bulk and formulated drug product. This can help to manage spending as well as finding costing of the product.
Read full review Pros Continuous availability: as a fully distributed database (no master nodes), we can update nodes with rolling restarts and accommodate minor outages without impacting our customer services. Linear scalability: for every unit of compute that you add, you get an equivalent unit of capacity. The same application can scale from a single developer's laptop to a web-scale service with billions of rows in a table. Amazing performance: if you design your data model correctly, bearing in mind the queries you need to answer, you can get answers in milliseconds. Time-series data: Cassandra excels at recording, processing, and retrieving time-series data. It's a simple matter to version everything and simply record what happens, rather than going back and editing things. Then, you can compute things from the recorded history. Read full review Real-time reporting and analytics on data: because of its in-memory architecture, it is perfect for businesses that need to make quick decisions based on current information. Managing workload with complex data: it can handle a vast range of data types, including relational, documental, geospatial, graph, vector, and time series data. Developing and deploying intelligent data applications: it provides various tools for such applications and can be used for machine learning and artificial intelligence to automate tasks, gain insights from data, and make predictions. Read full review Cons Cassandra runs on the JVM and therefor may require a lot of GC tuning for read/write intensive applications. Requires manual periodic maintenance - for example it is recommended to run a cleanup on a regular basis. There are a lot of knobs and buttons to configure the system. For many cases the default configuration will be sufficient, but if its not - you will need significant ramp up on the inner workings of Cassandra in order to effectively tune it. Read full review Requires higher processing power, otherwise it won't fly. How ever computing costs are lower. Incase you are migrating to cloud please do not select the highest config available in that series . Upgrading it later against a reserved instance can cost you dearly with a series change Lack of clarity on licensing is one major challenge Unless S/4 with additional features are enabled mere migration HANA DB is not a rewarding journey. Power is in S/4 Read full review Likelihood to Renew I would recommend Cassandra DB to those who know their use case very well, as well as know how they are going to store and retrieve data. If you need a guarantee in data storage and retrieval, and a DB that can be linearly grown by adding nodes across availability zones and regions, then this is the database you should choose.
Read full review At this moment we are not focusing on SAP, however would love to in the future. This is primarily because of our limited ability to generate more revenue to fund for SAP partnerships and products. Our initial tryst with SAP Partneredge open ecosystem didn't go as planned and we have shelved that for now. Hope we can revive in the future
Read full review Usability It’s great tool but it can be complicated when it comes administration and maintenance.
Read full review In addition to the points described in the previous parts of the review, I believe that as I gain more experience with the product over time, I will be able to better describe my experience with this tool. Meanwhile, I can confirm that the possibilities presented to my organization by the change to SAP HANA, at the moment, have been very important to evolve the analytical and strategic field towards a new path.
Read full review Support Rating Sometimes instead giving straight answer, we ‘re getting transfered to talk professional service.
Read full review One specific example of how the support for SAP HANA Cloud impacted us is in our efforts to troubleshoot and resolve technical issues. Whenever we encountered an issue or had a question, the support team was quick to respond and provided us with clear and actionable guidance. This helped us avoid downtime and keep our analytics operations running smoothly.
Read full review Implementation Rating Professional GIS people are some of the most risk-averse there are, and it's difficult to get them to move to HANA in one step. Start with small projects building to 80% use of HANA spatial over time.
Read full review Alternatives Considered We evaluated
MongoDB also, but don't like the single point failure possibility. The
HBase coupled us too tightly to the Hadoop world while we prefer more technical flexibility. Also
HBase is designed for "cold"/old historical data lake use cases and is not typically used for web and mobile applications due to its performance concern. Cassandra, by contrast, offers the availability and performance necessary for developing highly available applications. Furthermore, the Hadoop technology stack is typically deployed in a single location, while in the big international enterprise context, we demand the feasibility for deployment across countries and continents, hence finally we are favor of Cassandra
Read full review I have deep knowledge of other disk based DBMSs. They are venerable technology, but the attempts to extend them to current architectures belie the fact they are built on 40 year old technology. There are some good columnar in-memory databases but they lack the completeness of capability present in the HANA platform.
Read full review Scalability Limitation of training deliverable by organization
Read full review Return on Investment I have no experience with this but from the blogs and news what I believe is that in businesses where there is high demand for scalability, Cassandra is a good choice to go for. Since it works on CQL, it is quite familiar with SQL in understanding therefore it does not prevent a new employee to start in learning and having the Cassandra experience at an industrial level. Read full review ROI has always been high in terms of the functionality that it offers and the security features it comes with. Managing large volumes of data in real-time is not an easy task, but it does it pretty well with faster data processing. Read full review ScreenShots