Apache Geode is a distributed in-memory database designed to support low latency, high concurrency solutions, available free and open source since 2002. With it, users can build high-speed, data-intensive applications that elastically meet performance requirements. Apache Geode blends techniques for data replication, partitioning and distributed processing.
N/A
IBM Cloudant
Score 7.4 out of 10
N/A
Cloudant is an open source non-relational, distributed database service that requires zero-configuration. It's based on the Apache-backed CouchDB project and the creator of the open source BigCouch project.
Cloudant's service provides integrated data management, search, and analytics engine designed for web applications. Cloudant scales your database on the CouchDB framework and provides hosting, administrative tools, analytics and commercial support for CouchDB and BigCouch.
Cloudant is often…
$1
per month per GB of storage above the included 20 GB
Pricing
Apache Geode
IBM Cloudant
Editions & Modules
No answers on this topic
Standard
$1
per month per GB of storage above the included 20 GB
Standard
$75
per month 100 reads/second ; 50 writes/second ; 5 global queries/second
Lite
Free
20 reads/second ; 10 writes/second ; 5 global queries / second ; 1 GB of storage capacity
Standard
Included
per month 20 GB of storage
Offerings
Pricing Offerings
Apache Geode
IBM Cloudant
Free Trial
No
Yes
Free/Freemium Version
No
Yes
Premium Consulting/Integration Services
No
Yes
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Apache Geode
IBM Cloudant
Features
Apache Geode
IBM Cloudant
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
The biggest advantage of using Apache Geode is DB like consistency. So for applications whose data needs to be in-memory, accessible at low latencies and most importantly writes have to be consistent, should use Apache Geode. For our application quite some amount of data is static which we store in MySQL as it can be easily manipulated. But since this data is large R/w from DB becomes expensive. So we started using Redis. Redis does a brilliant job, but with complex data structures and no query like capability, we have to manage it via code. We are experimenting with Apache Geode and it looks promising as now we can query on complex data-structures and get the required data quickly and also updates consistent.
Our organization found Cloudant most suitable if One, a fixed pricing structure would make the most sense, for example in a situation where the project Cloudant is being used in makes its revenue in procurement or fixed retainer — thus the predictability of costs is paramount; Two, where you need to frequently edit the data and/or share access to the query engine to non-engineers — this is where the GUI shines.
the flexibility of NoSQL allow us to modify and upgrade our apps very fast and in a convenient way. Having the solution hosted by IBM is also giving us the chance to focus on features and the improvement of our apps. It's one thing less to be worried about
Still Experimenting. Initial results are good. we need to figure out if we can completely replace Redis. Cost wise if it makes sense to keep both or replacement is feasible.
It's mostly just a straight forward API to a data store. I knock one off for the full text search thing, but I don't need it much anyways. Also, the dashboard UI they give is pretty nice to use. It provides syntax-highlighting for writing views and queries are easy to test. I wish other DBs had a UI like this.
it is a highly available solution in the IBM cloud portfolio and hence we have never had any issues with the data base being available - we also do continuous replication to be on the safer side just in case some thing goes awry. We also perform twice a year disaster recovery tests.
very easy to get started and is very developer friendly given that it uses couchDB analytics. It is a cloud based solution and hence there is no hardware investment in a server and staging the server to get started and the associated delays/bureaucracy involved to get started. Good documentation is also available.
online resources are good enough to understand but there is nothing like testing. In our case, we discovered some not documented behavior that we take in count now. Also, the experience in NodeJs is critical. Also, take in count that most of the "good practices" with cloudant are not in online courses but in blogs and pages from independent developers
The feature-set, including security, is very comparable. Overall, IBM's services added to the product are mature and stable, although product support and engineers could be a little better. Global availability is improving, and Disaster Recover Capabilities are great. Overall, it's very comparable to MongoDB as a DBaaS offer, available globally and with great documentation.
The service scales incredibly well. As you would expect from CloudDB and IBM combination. The only reason I wouldn't score it a 10 is the fact that document trees can get nested and nested very quickly if you are attempting to do very complex datasets. Which makes your code that much more complex to deal. Its very possible we could find a solution to this problem with better database planning to begin with, but one of the reasons we chose a service over a self-hosted solution was so we could set it up quick and forget about it. So we weren't going to dedicate a team to architecture optimization.