ArangoDB is a distributed free and open-source database with a flexible data model for graphs, documents, and key-values. Its supporters state that developers can build high performance applications on top of ArangoDB using a convenient SQL-like query language or JavaScript extensions.
N/A
MongoDB
Score 8.7 out of 10
N/A
MongoDB is an open source document-oriented database system. It is part of the NoSQL family of database systems. Instead of storing data in tables as is done in a "classical" relational database, MongoDB stores structured data as JSON-like documents with dynamic schemas (MongoDB calls the format BSON), making the integration of data in certain types of applications easier and faster.
$0.10
million reads
Presto
Score 10.0 out of 10
N/A
Presto is an open source SQL query engine designed to run queries on data stored in Hadoop or in traditional databases.
Teradata supported development of Presto followed the acquisition of Hadapt and Revelytix.
N/A
Pricing
ArangoDB
MongoDB
Presto
Editions & Modules
No answers on this topic
Shared
$0
per month
Serverless
$0.10million reads
million reads
Dedicated
$57
per month
No answers on this topic
Offerings
Pricing Offerings
ArangoDB
MongoDB
Presto
Free Trial
No
Yes
No
Free/Freemium Version
No
Yes
No
Premium Consulting/Integration Services
No
No
No
Entry-level Setup Fee
No setup fee
No setup fee
No setup fee
Additional Details
—
Fully managed, global cloud database on AWS, Azure, and GCP
Use cases provided by default are good and can be improve better using Machine Learning and AI. AQL query language is very simple and efficient in use if anyone using SQL can quickly learn AQL Language.
Developers can easily map the database and can access various patterns like search, ranking.
JSON and semantic search is the latest and next-generation technology to implement to access and extract large datasets.
If asked by a colleague I would highly recommend MongoDB. MongoDB provides incredible flexibility and is quick and easy to set up. It also provides extensive documentation which is very useful for someone new to the tool. Though I've used it for years and still referenced the docs often. From my experience and the use cases I've worked on, I'd suggest using it anywhere that needs a fast, efficient storage space for non-relational data. If a relational database is needed then another tool would be more apt.
Presto is for interactive simple queries, where Hive is for reliable processing. If you have a fact-dim join, presto is great..however for fact-fact joins presto is not the solution.. Presto is a great replacement for proprietary technology like Vertica
Being a JSON language optimizes the response time of a query, you can directly build a query logic from the same service
You can install a local, database-based environment rather than the non-relational real-time bases such a firebase does not allow, the local environment is paramount since you can work without relying on the internet.
Forming collections in Mango is relatively simple, you do not need to know of query to work with it, since it has a simple graphic environment that allows you to manage databases for those who are not experts in console management.
Linking, embedding links and adding images is easy enough.
Once you have become familiar with the interface, Presto becomes very quick & easy to use (but, you have to practice & repeat to know what you are doing - it is not as intuitive as one would hope).
Organizing & design is fairly simple with click & drag parameters.
An aggregate pipeline can be a bit overwhelming as a newcomer.
There's still no real concept of joins with references/foreign keys, although the aggregate framework has a feature that is close.
Database management/dev ops can still be time-consuming if rolling your own deployments. (Thankfully there are plenty of providers like Compose or even MongoDB's own Atlas that helps take care of the nitty-gritty.
Presto was not designed for large fact fact joins. This is by design as presto does not leverage disk and used memory for processing which in turn makes it fast.. However, this is a tradeoff..in an ideal world, people would like to use one system for all their use cases, and presto should get exhaustive by solving this problem.
Resource allocation is not similar to YARN and presto has a priority queue based query resource allocation..so a query that takes long takes longer...this might be alleviated by giving some more control back to the user to define priority/override.
UDF Support is not available in presto. You will have to write your own functions..while this is good for performance, it comes at a huge overhead of building exclusively for presto and not being interoperable with other systems like Hive, SparkSQL etc.
I am looking forward to increasing our SaaS subscriptions such that I get to experience global replica sets, working in reads from secondaries, and what not. Can't wait to be able to exploit some of the power that the "Big Boys" use MongoDB for.
NoSQL database systems such as MongoDB lack graphical interfaces by default and therefore to improve usability it is necessary to install third-party applications to see more visually the schemas and stored documents. In addition, these tools also allow us to visualize the commands to be executed for each operation.
Finding support from local companies can be difficult. There were times when the local company could not find a solution and we reached a solution by getting support globally. If a good local company is found, it will overcome all your problems with its global support.
While the setup and configuration of MongoDB is pretty straight forward, having a vendor that performs automatic backups and scales the cluster automatically is very convenient. If you do not have a system administrator or DBA familiar with MongoDB on hand, it's a very good idea to use a 3rd party vendor that specializes in MongoDB hosting. The value is very well worth it over hosting it yourself since the cost is often reasonable among providers.
We have [measured] the speed in reading/write operations in high load and finally select the winner = MongoDBWe have [not] too much data but in case there will be 10 [times] more we need Cassandra. Cassandra's storage engine provides constant-time writes no matter how big your data set grows. For analytics, MongoDB provides a custom map/reduce implementation; Cassandra provides native Hadoop support.
Presto is good for a templated design appeal. You cannot be too creative via this interface - but, the layout and options make the finalized visual product appealing to customers. The other design products I use are for different purposes and not really comparable to Presto.
Open Source w/ reasonable support costs have a direct, positive impact on the ROI (we moved away from large, monolithic, locked in licensing models)
You do have to balance the necessary level of HA & DR with the number of servers required to scale up and scale out. Servers cost money - so DR & HR doesn't come for free (even though it's built into the architecture of MongoDB