HDInsight is an implementation of the Apache Hadoop technology stack on the Microsoft Azure cloud platform: It is based on the Hortonworks Hadoop distribution. Microsoft Azure HDInsight includes implementations of Apache Spark, HBase, Storm, Pig, Hive, Sqoop, Oozie, Ambari, etc. It also integrates with with business intelligence (BI) tools such as Power BI, Excel, SQL Server Analysis Services, and SQL Server Reporting Services.
N/A
Azure Synapse Analytics
Score 7.6 out of 10
N/A
Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
$4,700
per month 5000 Synapse Commit Units (SCUs)
Pricing
Azure HDInsight
Azure Synapse Analytics
Editions & Modules
No answers on this topic
Tier 1
$4,700
per month 5,000 Synapse Commit Units (SCUs)
Tier 2
$9,200
per month 10,000 Synapse Commit Units (SCUs)
Tier 3
$21,360
per month 24,000 Synapse Commit Units (SCUs)
Tier 4
$50,400
per month 60,000 Synapse Commit Units (SCUs)
Tier 5
$117,000
per month 150,000 Synapse Commit Units (SCUs)
Tier 6
$259,200
per month 360,000 Synapse Commit Units (SCUs)
Offerings
Pricing Offerings
Azure HDInsight
Azure Synapse Analytics
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Azure HDInsight
Azure Synapse Analytics
Considered Both Products
Azure HDInsight
No answer on this topic
Azure Synapse Analytics
Verified User
Contributor
Chose Azure Synapse Analytics
SQL Data Warehousing is much easier to manage if you already have SQL Server experience and analysts who are familiar with its interface. We are currently piloting using NoSQL and Hadoop type databases but it is difficult to get set up properly. Additionally, we have to …
Well suited: A tiny-mid sized company with no immediate plans of growing the volume of their data processing, that can afford long response times from support. Also it helps if you are not prone to put your hands on Linux and Spark configuration. In fact, it can make things go really faster if you also work with the bundle-in Jupyter. And, if you need to perform some diagnostics and / or administrative tasks, that's full of tools to find an understand the Root Cause. Ideal for non experts. Less appropriate: Big Data company, intense on demand cluster creation, mission critical, costs reduction, latest versions of libraries required, sophisticate customizations required.
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
Quick to return data. Queries in a SQL data warehouse architecture tend to return data much more quickly than a OLTP setup. Especially with columnar indexes.
Ability to manage extremely large SQL tables. Our databases contain billions of records. This would be unwieldy without a proper SQL datawarehouse
Backup and replication. Because we're already using SQL, moving the data to a datawarehouse makes it easier to manage as our users are already familiar with SQL.
The only problem I have come across is when loading large volumes of data I sometimes get an error message, I assume this means something is corrupt from within. I would love a way for this to be resolved without having to start over.
With Azure, it's always the same issue, too many moving parts doing similar things with no specialisation. ADF, Fabric Data Factory and Synapse pipeline serve the same purpose. Same goes for Fabric Warehouse and Synapse SQL pools.
Could do better with serverless workloads considering the competition from databricks and its own fabric warehouse
Synapse pipelines is a replica of Azure Data Factory with no tight integration with Synapse and to a surprise, with missing features from ADF. Integration of warehouse can be improved with in environment ETl tools
Azure HDInsight is usable on the top of Azure Data Lake and gives us the benefit of analyzing large scale data workload in Hadoop. Usability and support from Microsoft are outstanding.
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
Inexpert, isolated teams... not good for support an excessively complex platform. Lots of weeks or months for a complex problem troubleshoot. Many time lost stuck on MindTree, before the case was finally escalated with Microsoft!
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
At this time I have not used any other similar products... I am open to it but Azure HDInsight and its components really work well for our organization.
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into account computation and storage.
Licensing fees is replaced with Azure subscription fee. No big saving there
More visibility into the Azure usage and cost
It can be used a hot storage and old data can be archived to data lake. Real time data integration is possible via external tables and Microsoft Power BI