Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
$4,700
per month 5000 Synapse Commit Units (SCUs)
Oracle Autonomous Data Warehouse
Score 8.9 out of 10
N/A
Oracle Autonomous Data Warehouse is optimized for analytic workloads, including data marts, data warehouses, data lakes, and data lakehouses. With Autonomous Data Warehouse, data scientists, business analysts, and nonexperts can discover business insights using data of any size and type. The solution is built for the cloud and optimized using Oracle Exadata.
We also looked at Oracle Data Warehouse as part of our short list of products to implement as a solution. Oracle's product turned out to have less support by way of easily accessible internet blogs. Oracle was also considerably more expensive and we would have needed to hire …
Oracle data warehouse has the capability of running both the Online Transaction Processing (OLTP) and Online Analytical Processing (OLAP) databases on the same platform. This capabilities cannot be handled by other datawarehouse like TeraData. This capability helps Oracle to …
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
II would recommend Oracle Autonomous Data Warehouse to someone looking to fully automate the transferring of data especially in a warehouse scenario though I can see the elasticity of the suite that is offered and can see it is applicable in other scenarios not just warehouses.
Quick to return data. Queries in a SQL data warehouse architecture tend to return data much more quickly than a OLTP setup. Especially with columnar indexes.
Ability to manage extremely large SQL tables. Our databases contain billions of records. This would be unwieldy without a proper SQL datawarehouse
Backup and replication. Because we're already using SQL, moving the data to a datawarehouse makes it easier to manage as our users are already familiar with SQL.
Very easy and fast to load data into the Oracle Autonomous Data Warehouse
Exceptionally fast retrieval of data joining 100 million row table with a billion row table plus the size of the database was reduced by a factor of 10 due to how Oracle store[s] and organise[s] data and indexes.
Flexibility with scaling up and down CPU on the fly when needed, and just stop it when not needed so you don't get charged when it is not running.
It is always patched and always available and you can add storage dynamically as you need it.
With Azure, it's always the same issue, too many moving parts doing similar things with no specialisation. ADF, Fabric Data Factory and Synapse pipeline serve the same purpose. Same goes for Fabric Warehouse and Synapse SQL pools.
Could do better with serverless workloads considering the competition from databricks and its own fabric warehouse
Synapse pipelines is a replica of Azure Data Factory with no tight integration with Synapse and to a surprise, with missing features from ADF. Integration of warehouse can be improved with in environment ETl tools
It is very expensive product. But not to mention, there's good reasons why it is expensive.
The product should support more cloud based services. When we made the decision to buy the product (which was 20 years ago,) there was no such thing to consider, but moving to a cloud based data warehouse may promise more scalability, agility, and cost reduction. The new version of Data Warehouse came out on the way, but it looks a bit behind compared to other competitors.
Our healthcare data consists of 30% coded data (such as ICD 10 / SNOMED C,T) but the rests is narrative (such as clinical notes.). Oracle is the best for warehousing standardized data, but not a good choice when considering unstructured data, or a mix of the two.
Does not require continous attention from the DBA, autonomous features allows the database to perform most of the regular admin tasks without need for human intervention.
Allows to integrate multiple data sources on a central data warehouse, and explode the information stored with different analytic and reporting tools.
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
Understanding Oracle Cloud Infrastructure is really simple, and Autonomous databases are even more. Using shared or dedicated infrastructure is one of the few things you need to consider at the moment of starting provisioning your Oracle Autonomous Data Warehouse.
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into account computation and storage.
As I mentioned, I have also worked with Amazon Redshift, but it is not as versatile as Oracle Autonomous Data Warehouse and does not provide a large variety of products. Oracle Autonomous Data Warehouse is also more reliable than Amazon Redshift, hence why I have chosen it
Licensing fees is replaced with Azure subscription fee. No big saving there
More visibility into the Azure usage and cost
It can be used a hot storage and old data can be archived to data lake. Real time data integration is possible via external tables and Microsoft Power BI
Overall the business objective of all of our clients have been met positively with Oracle Data Warehouse. All of the required analysis the users were able to successfully carry out using the warehouse data.
Using a 3-tier architecture with the Oracle Data Warehouse at the back end the mid-tier has been integrated well. This is big plus in providing the necessary tools for end users of the data warehouse to carry out their analysis.
All of the various BI products (OBIEE, Cognos, etc.) are able to use and exploit the various analytic built-in functionalities of the Oracle Data Warehouse.