Azure Synapse Analytics is described as the former Azure SQL Data Warehouse, evolved, and as a limitless analytics service that brings together enterprise data warehousing and Big Data analytics. It gives users the freedom to query data using either serverless or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
$4,700
per month 5000 Synapse Commit Units (SCUs)
Oracle Exadata
Score 9.9 out of 10
N/A
Oracle Exadata is an enterprise database platform that runs Oracle Database workloads of any scale and criticality with high performance, availability, and security. Exadata’s scale-out design employs optimizations that let transaction processing, analytics, machine learning, and mixed workloads run faster. Consolidating diverse Oracle Database workloads on Exadata platforms in enterprise data centers, Oracle Cloud Infrastructure (OCI), and multicloud environments helps organizations increase…
$2.90
Per Unit
Pricing
Azure Synapse Analytics
Oracle Exadata
Editions & Modules
Tier 1
$4,700
per month 5,000 Synapse Commit Units (SCUs)
Tier 2
$9,200
per month 10,000 Synapse Commit Units (SCUs)
Tier 3
$21,360
per month 24,000 Synapse Commit Units (SCUs)
Tier 4
$50,400
per month 60,000 Synapse Commit Units (SCUs)
Tier 5
$117,000
per month 150,000 Synapse Commit Units (SCUs)
Tier 6
$259,200
per month 360,000 Synapse Commit Units (SCUs)
Database Server
$2.9032
Per Unit
Quarter Rack
$14.5162
Per Unit
Offerings
Pricing Offerings
Azure Synapse Analytics
Oracle Exadata
Free Trial
No
No
Free/Freemium Version
No
No
Premium Consulting/Integration Services
No
No
Entry-level Setup Fee
No setup fee
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Azure Synapse Analytics
Oracle Exadata
Features
Azure Synapse Analytics
Oracle Exadata
Access Control and Security
Comparison of Access Control and Security features of Product A and Product B
It's well suited for large, fastly growing, and frequently changing data warehouses (e.g., in startups). It's also suited for companies that want a single, relatively easy-to-use, centralized cloud service for all their data needs. Larger, more structured organizations could still benefit from this service by using Synapse Dedicated SQL Pools, knowing that costs will be much higher than other solutions. I think this product is not suited for smaller, simpler workloads (where an Azure SQL Database and a Data Factory could be enough) or very large scenarios, where it may be better to build custom infrastructure.
First, get the database on Oracle. If you are in an Oracle stack, it would be much better to use the Oracle products. If you are driving a Ferrari, you wouldn’t put a Mercedes engine in it. If you are writing a query, you cannot rely on other brands. Since I'm an architect, when I look for a product, I look for performance.
The installation is easy because it comes out-of-the-box and you just start using it.
Previous to Oracle Exadata, we were using a normal Oracle RAC service. We were just waiting for this product to come out.
I'm currently writing a data warehouse on Exadata. Before this solution, we were aiming for this to be completed by 8 a.m., when our ETLs would finish. With the help of Exadata's special features, this was reduced to 3 a.m. This solution allows us to bring more data within the same time period. It provides us with more subject areas that provide more reports to our users. Our ETL times reduced to 65%, then to 50%.
Quick to return data. Queries in a SQL data warehouse architecture tend to return data much more quickly than a OLTP setup. Especially with columnar indexes.
Ability to manage extremely large SQL tables. Our databases contain billions of records. This would be unwieldy without a proper SQL datawarehouse
Backup and replication. Because we're already using SQL, moving the data to a datawarehouse makes it easier to manage as our users are already familiar with SQL.
With Azure, it's always the same issue, too many moving parts doing similar things with no specialisation. ADF, Fabric Data Factory and Synapse pipeline serve the same purpose. Same goes for Fabric Warehouse and Synapse SQL pools.
Could do better with serverless workloads considering the competition from databricks and its own fabric warehouse
Synapse pipelines is a replica of Azure Data Factory with no tight integration with Synapse and to a surprise, with missing features from ADF. Integration of warehouse can be improved with in environment ETl tools
The data warehouse portion is very much like old style on-prem SQL server, so most SQL skills one has mastered carry over easily. Azure Data Factory has an easy drag and drop system which allows quick building of pipelines with minimal coding. The Spark portion is the only really complex portion, but if there's an in-house python expert, then the Spark portion is also quiet useable.
Microsoft does its best to support Synapse. More and more articles are being added to the documentation, providing more useful information on best utilizing its features. The examples provided work well for basic knowledge, but more complex examples should be added to further assist in discovering the vast abilities that the system has.
In comparing Azure Synapse to the Google BigQuery - the biggest highlight that I'd like to bring forward is Azure Synapse SQL leverages a scale-out architecture in order to distribute computational processing of data across multiple nodes whereas Google BigQuery only takes into account computation and storage.
Oracle Exadata Database Machine had the best performance overall hands down. It clearly beat the competition and we were seeing 1000X improvement on SAP HANA. Oracle Exadata Database Machine beat that without us refactoring our code. To achieve that in HANA, we had to refactor the code somewhat. Now this was for our limited POC of 5 use cases. Given the large number of stored procedures we had in Sybase, we need to capture more production metrics but we are seeing incredible performance.
Licensing fees is replaced with Azure subscription fee. No big saving there
More visibility into the Azure usage and cost
It can be used a hot storage and old data can be archived to data lake. Real time data integration is possible via external tables and Microsoft Power BI
Single support from a single vendor with both machine and database from Oracle, which is costing us less.
With Exadata, we need less technical manpower and less technical support. A business transaction with the integrated and centralized database helps us focus on other business needs.
We don't need to buy additional licenses and Hardware for the next 3 to 5 years.