Couchbase Server is a cloud-native, distributed database that fuses the strengths of relational databases such as SQL and ACID transactions with JSON flexibility and scale that defines NoSQL. It is available as a service in commercial clouds and supports hybrid and private cloud deployments.
N/A
Qubole
Score 5.0 out of 10
N/A
Qubole is a NoSQL database offering from the California-based company of the same name.
N/A
Pricing
Couchbase Server
Qubole
Editions & Modules
No answers on this topic
No answers on this topic
Offerings
Pricing Offerings
Couchbase Server
Qubole
Free Trial
Yes
No
Free/Freemium Version
Yes
No
Premium Consulting/Integration Services
Yes
No
Entry-level Setup Fee
Optional
No setup fee
Additional Details
—
—
More Pricing Information
Community Pulse
Couchbase Server
Qubole
Features
Couchbase Server
Qubole
NoSQL Databases
Comparison of NoSQL Databases features of Product A and Product B
Best suited when edge devices have interrupted internet connection. And Couchbase provides reliable data transfer. If used for attachment Couchbase has a very poor offering. A hard limit of 20 MB is not okay. They have the best conflict resolution but not so great query language on Couchbase lite.
I find Qubole is well suited for getting started analyzing data in the cloud without being locked in to a specific cloud vendor's tooling other than the underlying filesystem. Since the data itself is not isolated to any Qubole cluster, it can be easily be collected back into a cloud-vendor's specific tools for further analysis, therefore I find it complementary to any offerings such as Amazon EMR or Google DataProc.
The N1QL engine performs poorly compared to SQL engines due to the number of interactions needed, so if your use case involves the need for a lot of SQL-like query activity as opposed to the direct fetch of data in the form of a key/value map you may want to consider a RDBMS that has support for json data types so that you can more easily mix the use of relational and non-relational approaches to data access.
You have to be careful when using multiple capabilities (e.g. transactions with Sync Gateway) as you will typically run into problems where one technology may not operate correctly in combination with another.
There are quality problems with some newly released features, so be careful with being an early adopter unless you really need the capability. We somewhat desperately adopted the use of transactions, but went through multiple bughunt cycles with Couchbase working the kinks out.
Providing an open selection of all cloud provider instance types with no explanation as to their ideal use cases causes too much confusion for new users setting up a new cluster. For example, not everyone knows that Amazon's R or X-series models are memory optimized, while the C and M-series are for general computation.
I would like to see more ETL tools provided other than DistCP that allow one to move data between Hadoop Filesystems.
From the cluster administration side, onboarding of new users for large companies seems troublesome, especially when trying to create individual cluster per team within the company. Having the ability to debug and share code/queries between users of other teams / clusters should also be possible.
I rarely actually use Couchbase Server, I just stay up-to-date with the features that it provides. However, when the need arises for a NoSQL datastore, then I will strongly consider it as an option
Personally, I have no issues using Amazon EMR with Hue and Zeppelin, for example, for data science and exploratory analysis. The benefits to using Qubole are that it offers additional tooling that may not be available in other cloud providers without manual installation and also offers auto-terminating instances and scaling groups.
Couchbase has been quite a usable for our implementation. We had similar experience with our previous "trial" implementation, however it was short lived.
Couchbase has so far exceeded expectation. Our implementation team is more confident than ever before.
When we are Live for more than 6 months, I'm hoping to enhance this rating.
One of Couchbase’s greatest assets is its performance with large datasets. Properly set up with well-sized clusters, it is also highly reliable and scalable. User management could be better though, and security often feels like an afterthought. Couchbase has improved tremendously since we started using it, so I am sure that these issues will be ironed out.
I haven't had many opportunities to request support, I will look forward to better the rating. We have technical development and integration team who reach out directly to TAM at Couchbase.
The Apache Cassandra was one type of product used in our company for a couple of use-cases. The Aerospike is something we [analyzed] not so long time ago as an interesting alternative, due to its performance characteristics. The Oracle Coherence was and is still being used for [the] distributed caching use-case, but it will be replaced eventually by Couchbase. Though each of these products [has] its own strengths and weaknesses, we prefer sticking to Couchbase because of [the] experience we have with this product and because it is cost-effective for our organization.
Qubole was decided on by upper management rather than these competitive offerings. I find that Databricks has a better Spark offering compared to Qubole's Zeppelin notebooks.
So far, the way that we mange and upgrade our clusters has be very smooth. It works like a dream when we use it in concert with AWS and their EC2 machines. Having access to powerful instances along side the Couchbase interface is amazing and allows us to do rebalances or maintenance without a worry
We like to say that Qubole has allowed for "data democratization", meaning that each team is responsible for their own set of tooling and use cases rather than being limited by versions established by products such as Hortonworks HDP or Cloudera CDH
One negative impact is that users have over-provisioned clusters without realizing it, and end up paying for it. When setting up a new cluster, there are too many choices to pick from, and data scientists may not understand the instance types or hardware specs for the datasets they need to operate on.