The Dataiku platform unifies all data work, from analytics to Generative AI. It can modernize enterprise analytics and accelerate time to insights with visual, cloud-based tooling for data preparation, visualization, and workflow automation.
N/A
Talend Data Integration
Score 8.9 out of 10
N/A
The Talend Integration Suite, from Talend, is a set of tools for data integration.
Dataiku DSS is very well suited to handle large datasets and projects which requires a huge team to deliver results. This allows users to collaborate with each other while working on individual tasks. The workflow is easily streamlined and every action is backed up, allowing users to revert to specific tasks whenever required. While Dataiku DSS works seamlessly with all types of projects dealing with structured datasets, I haven't come across projects using Dataiku dealing with images/audio signals. But a workaround would be to store the images as vectors and perform the necessary tasks.
This tool fits all kinds of organizations and helps to integrate data between many applications. We can use this tool as data integration is a key feature for all organizations. It is also available in the cloud, which makes the integration more seamless. The firm can opt for the required tools when there are no data integration needs.
Talend Data Integration allows us to quickly build data integrations without a tremendous amount of custom coding (some Java and JavaScript knowledge is still required).
I like the UI and it's very intuitive. Jobs are visual, allowing the team members to see the flow of the data, without having to read through the Java code that is generated.
As I have described earlier, the intuitiveness of this tool makes it great as well as the variety of users that can use this tool. Also, the plugins available in their repository provide solutions to various data science problems.
We use Talend Data Integration day in and day out. It is the best and easiest tool to jump on to and use. We can build a basic integration super-fast. We could build basic integrations as fast as within the hour. It is also easy to build transformations and use Java to perform some operations.
The support team is very helpful, and even when we discover the missing features, after providing enough rational reasons and requirements, they put into it their development pipeline for the future release.
Good support, specially when it relates to PROD environment. The support team has access to the product development team. Things are internally escalated to development team if there is a bug encountered. This helps the customer to get quick fix or patch designed for problem exceptions. I have also seen support showing their willingness to help develop custom connector for a newly available cloud based big data solution
Strictly for Data Science operations, Anaconda can be considered as a subset of Dataiku DSS. While Anaconda supports Python and R programming languages, Dataiku also provides this facility, but also provides GUI to creates models with just a click of a button. This provides the flexibility to users who do not wish to alter the model hyperparameters in greater depths. Writing codes to extract meaningful data is time consuming compared to Dataiku's ability to perform feature engineering and data transformation through click of a button.
In comparison with the other ETLs I used, Talend is more flexible than Data Services (where you cannot create complex commands). It is similar to Datastage speaking about commands and interfaces. It is more user-friendly than ODI, which has a metadata point of view on its own, while Talend is more classic. It has both on-prem and cloud approaches, while Matillion is only cloud-based.
It’s only been a positive RoI with Talend given we’ve interfaced large datasets between critical on-Prem and cloud-native apps to efficiently run our business operations.