The DataRobot AI Platform is presented as a solution that accelerates and democratizes data science by automating the end-to-end journey from data to value and allows users to deploy AI applications at scale. DataRobot provides a centrally governed platform that gives users AI to drive business outcomes, that is available on the user's cloud platform-of-choice, on-premise, or as a fully-managed service. The solutions include tools providing data preparation enabling users to explore and…
$0
Cortana (discontinued)
Score 7.9 out of 10
N/A
Microsoft's Cortana was a general purpose productivity assistant, that has been deprecated as a standalone product.
Data Robot is a powerful tool for greatly reducing the time required to build powerful and accurate machine learning models. It then allows you to utilize these items. It is probably most appropriate for organisations looking to get into data science and incorporate Machine learning and AI into their decision making. Having dedicated resources that can be upskilled is perfect, as the expertise and software provided allows for a big jump from willing to able. For the to work effectively, organisations should really consider dedicating at least one resource to the ML and AI projects, and understsand that not every project will yield fruit. A lot of this is innovation and experimentation, so relying on data Robots insights in make or break situations is not recommended. You also need to manage expectations well as the data you have may simply not allow for a powerful model. Finally, the organisation must be open to change, this has to exist in tandem with the above. If the organisation's key stakeholders don't want to change, all the insights in the world won't help. So a willingness and ability to change effectively is required to maximize ROI.
It's easy for anyone who is expecting some simple AI problems like fetching the keywords, understanding the intent, language translation, etc. to be solved from an existing database and all they need is to connect to their APIs via a subscription model. But for complex use cases, there is still room for improvement like customization of underlying AI models for a specific use case like identifying some unique identifiers with respect to industry.
DataRobot helps, with algorithms, to analyze and decipher numerous machine-learning techniques in order to provide models to assist in company-wide decision making.
Our DataRobot program puts on an "even playing field" the strength of auto-machine learning and allows us to make decisions in an extremely timely manner. The speed is consistent without being offset by errors or false-negatives.
It encompasses many desired techniques that help companies in general, to reconfigure in to artificial intelligence driven firms, with little to no inconvenience.
The platform itself is very complicated. It probably can't function well without being complicated, but there is a big training curve to get over before you can effectively use it. Even I'm not sure if I'm effectively using it now.
The suggested model DataRobot deploys often not the best model for our purposes. We've had to do a lot of testing to make sure what model is the best. For regressive models, DataRobot does give you a MASE score but, for some reason, often doesn't suggest the best MASE score model.
The software will give you errors if output files are not entered correctly but will not exactly tell you how to fix them. Perhaps that is complicated, but being able to download a template with your data for an output file in the correct format would be nice.
DataRobot presents a machine-learning platform designed by data scientists from an array of backgrounds, to construct and develop precise predictive modeling in a fraction of the time previously taken. The tech invloved addresses the critical shortage of data scientists by changing the speed and economics of predictive analytics. DataRobot utilizes parallel processing to evaluate models in R, Python, Spark MLlib, H2O and other open source databases. It searches for possible permutations and algorithms, features, transformation, processes, steps and tuning to yield the best models for the dataset and predictive goal.
As I am writing this report I am participating with Datarobot Engineers in an complex environment and we have their whole support. We are in Mexico and is not common to have this commitment from companies without expensive contract services. Installing is on premise and the client does not want us to take control and they, the client, is also limited because of internal IT regulations ,,, soo we are just doing magic and everybody is committed.
DataRobot provided the perfect balance of features and price points. The other tools we tried were very expensive and provided extra things that we really didn't need. Some of the other tools also required you to host them on a server at your institution or pay for their cloud service in addition to getting the software. This added to the expense without adding any additional functionality.
IBM Watson Assistant has been early into this market and has improved a lot over time compared to Azure AI Cortana. More documentation related to the services. But Ease of integration Azure AI ranks over IBM Watson Assistant. And again in terms of services offered under the ecosystem, Azure AI precedes IBM Watson Assitant.
Difficult to ascertain the ROI as we are a software house who have developed a module in our application using Cortana. However for companies that use our software I would say the use of sentiment analysis in our application could free up at least 1 full time resource to be used elsewhere in their organisation.