Austin based Enthought offers their flagship scientific Python distribution, Canopy. The Canopy Geoscience (or Canopy Geo) variant of the product is a data analysis, exploration and visualization package optimized for geologists & geophysicists, and researchers in petroleum science.
N/A
PyCharm
Score 9.0 out of 10
N/A
PyCharm is an extensive Integrated
Development Environment (IDE) for Python developers. Its
arsenal includes intelligent code completion, error detection, and rapid
problem-solving features, all of which aim to bolster efficiency. The product supports programmers in composing orderly and maintainable
code by offering PEP8 checks, testing assistance, intelligent refactorings, and
inspections. Moreover, it caters to web development frameworks like Django and
Flask by providing framework…
I used to use Enthought Canopy, but I prefer Pycharm. I like the appearance of Pycharm much more, and I personally feel that it is more intuitive than Enthought Canopy. Plus, I have had great experiences with the JetBrains support team. When I had issues with installation, I …
Enthought Canopy is best suites for scripting data analytical concepts. It has a wide range of data analytical libraries and also is good for data visualization. I would not recommend using Enthought Canopy only as an IDE, there may be better options available. If you're looking for a good data simulation & visualization package, Canopy it is.
PyCharm is well suited to developing and deploying Python applications in the cloud using Kubernetes or serverless pipelines. The integration with GitLab is great; merges and rebates are easily done and help the developer move quickly. The search engine that allows you to search inside your code is also great. It is less appropriate for other languages.
Providing scientific libraries, both open source and Enthought's own libraries which are excellent.
Training. They provide several courses in python for general use and for data analysis.
Debugging tools. Several IDEs provides tools for debugging, but I think they are insufficient or too general. Canopy has a special debugging tool, specially design for python.
Git integration is really essential as it allows anyone to visually see the local and remote changes, compare revisions without the need for complex commands.
Complex debugging tools are basked into the IDE. Controls like break on exception are sometimes very helpful to identify errors quickly.
Multiple runtimes - Python, Flask, Django, Docker are native the to IDE. This makes development and debugging and even more seamless.
Integrates with Jupyter and Markdown files as well. Side by side rendering and editing makes it simple to develop such files.
The biggest complaint I have about PyCharm is that it can use a lot of RAM which slows down the computer / IDE. I use the paid version, and have otherwise found nothing to complain about the interface, utility, and capabilities.
It's pretty easy to use, but if it's your first time using it, you need time to adapt. Nevertheless, it has a lot of options, and everything is pretty easy to find. The console has a lot of advantages and lets you accelerate your development from the first day.
I rate 10/10 because I have never needed a direct customer support from the JetBrains so far. Whenever and for whatever kind of problems I came across, I have been able to resolve it within the internet community, simply by Googling because turns out most of the time, it was me who lacked the proper information to use the IDE or simply make the proper configuration. I have never came across a bug in PyCharm either so it deserves 10/10 for overall support
Before Canopy with its python we were working with Matlab. We decided for Canopy against Matlab for two reasons: First, we believe that python together with NumPy or SciPy can achieve the objectives with less code and therefore less training, and second the prizes are much lower than matlab which is most robust, expensive and less intuitive. It's clear we are making the comparison with python and it has nothing to with canopy. But with Canopy you feel you have all those tools close together without the problem of configuration, besides a lot of personalized libraries that complements a typical python environment.
When it comes to development and debugging PyCharm is better than Spyder as it provides good debugging support and top-quality code completion suggestions. Compared to Jupiter notebook it's easy to install required packages in PyCharm, also PyChram is a good option when we want to write production-grade code because it provides required suggestions.