Google offers the Firebase suite of application development tools, available free or at cost for higher degree of usages, priced flexibly accorded to features needed. The suite includes A/B testing and Crashlytics, Cloud Messaging (FCM) and in-app messaging, cloud storage and NoSQL storage (Cloud Firestore and Firestore Realtime Database), and other features supporting developers with flexible mobile application development.
$0.01
Per Verification
Google BigQuery
Score 8.7 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Unlike other tools in the GCP suite that have an equivalent in other clouds such as Bigquery (Athenas on AWS), AI Platform (Sagemaker), Storage (S3), we do not find an equivalent as complete as Firebase in any other provider. This is the main reason why we chose this provider …
Firebase is not a competitor, necessarily, of BigQuery, but its integration with it allows for a greater deep dive into our Firebase data. The only reason we needed to start using BigQuery was that Firebase didn't give us the locational data that we need. Because of the easy …
Google's Firebase isn't a competitor but we had to use Google's BigQuery because Google's Firebase's database is limited compared to Google's BigQuery. Linking your Firebase project to BigQuery lets you access your raw, unsampled event data along with all of your parameters and …
I was already familiar with the Google Cloud Platform environment, and I was better equipped with the standard SQL language. Some of the syntax does not translate well to Redshift. It also seemed like many data source integrations relevant to our business were easier and more …
Firebase should be your first choice if your platform is mobile first. Firebase's mobile platform support for client-side applications is second to none, and I cannot think of a comparable cross-platform toolkit. Firebase also integrates well with your server-side solution, meaning that you can plug Firebase into your existing app architecture with minimal effort.
Firebase lags behind on the desktop, however. Although macOS support is rapidly catching up, full Windows support is a glaring omission for most Firebase features. This means that if your platform targets Windows, you will need to implement the client functionality manually using Firebase's web APIs and wrappers, or look for another solution.
Google BigQuery is great for being the central datastore and entry point of data if you're on GCP. It seamlessly integrates with other Google products, meaning you can ingest data from other Google products with ease and little technical knowledge, and all of it is near real-time. Being serverless, BigQuery will scale with you, which means you don't have to worry about contention or spikes in demand/storage. This can, however, mean your costs can run away quickly or mount up at short notice.
Analytics wise, retention is extremely important to our app, therefore we take advantage of the cohort analysis to see the impact of our middle funnel (retargeting, push, email) efforts affect the percent of users that come back into the app. Firebase allows us to easily segment these this data and look at a running average based on certain dates.
When it comes to any mobile app, a deep linking strategy is essential to any apps success. With Firebase's Dynamic Links, we are able to share dynamic links (recognize user device) that are able to redirect to in-app content. These deep links allow users to share other deep-linked content with friends, that also have link preview assets.
Firebase allows users to effectively track events, funnels, and MAUs. With this simple event tracking feature, users can put organize these events into funnels of their main user flows (e.g., checkout flows, onboarding flows, etc.), and subsequently be able to understand where the drop-off is in the funnel and then prioritize areas of the funnel to fix. Also, MAU is important to be able to tell if you are bringing in new users and what's the active volume for each platform (Android, iOS).
First and foremost - Google BigQuery is great at quickly analyzing large amounts of data, which helps us understand things like customer behavior or product performance without waiting for a long time.
It is very easy to use. Anyone in our team can easily ask questions about our data using simple language, like asking ChatGPT a question. This means everyone can find important information from our data without needing to be a data expert.
It plays nicely with other tools we use, so we can seamlessly connect it with things like Google Cloud Storage for storing data or Data Studio for creating visual reports. This makes our work smoother and helps us collaborate better across different tasks.
Attribution and specifically multi-touch attribution could be more robust such as Branch or Appsflyer but understand this isn't Firebases bread and butter.
More parameters. Firebase allows you to track tons of events (believe it's up to 50 or so) but the parameters of the events it only allows you to track 5 which is so messily and unbelievable. So you're able to get good high-level data but if you want to get granular with the events and actions are taken on your app to get real data insight you either have to go with a paid data analytics platform or bring on someone that's an expert in SQL to go through Big Query.
City-specific data instead of just country-specific data would have been a huge plus as well.
It is challenging to predict costs due to BigQuery's pay-per-query pricing model. User-friendly cost estimation tools, along with improved budget alerting features, could help users better manage and predict expenses.
The BigQuery interface is less intuitive. A more user-friendly interface, enhanced documentation, and built-in tutorial systems could make BigQuery more accessible to a broader audience.
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Firebase functions are more difficult to use, there are no concepts of triggers or cascading deletes without the use of Firebase functions. Firebase functions can run forever if not written correctly and cause billing nightmares. While this hasn't happened to us specifically it is a thing that happens more than one realizes.
web UI is easy and convenient. Many RDBMS clients such as aqua data studio, Dbeaver data grid, and others connect. Range of well-documented APIs available. The range of features keeps expanding, increasing similar features to traditional RDBMS such as Oracle and DB2
Our analytics folks handled the majority of the communication when it came to customer service, but as far as I was aware, the support we got was pretty good. When we had an issue, we were able to reach out and get support in a timely fashion. Firebase was easy to reach and reasonably available to assist when needed.
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Before using Firebase, we exclusively used self hosted database services. Using Firebase has allowed us to reduce reliance on single points of failure and systems that are difficult to scale. Additionally, Firebase is much easier to set up and use than any sort of self hosted database. This simplicity has allowed us to try features that we might not have based on the amount of work they required in the past.
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Makes building real-time interfaces easy to do at scale with no backend involvement.
Very low pricing for small companies and green-fields projects.
Lack of support for more complicated queries needs to be managed by users and often forces strange architecture choices for data to enable it to be easily accessed.
Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.