Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Firebase
Score 7.7 out of 10
N/A
Google offers the Firebase suite of application development tools, available free or at cost for higher degree of usages, priced flexibly accorded to features needed. The suite includes A/B testing and Crashlytics, Cloud Messaging (FCM) and in-app messaging, cloud storage and NoSQL storage (Cloud Firestore and Firestore Realtime Database), and other features supporting developers with flexible mobile application development.
$0.01
Per Verification
Google BigQuery
Score 8.7 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Pricing
FirebaseGoogle BigQuery
Editions & Modules
Phone Authentication
$0.01
Per Verification
Stored Data
$0.18
Per GiB
Standard edition
$0.04 / slot hour
Enterprise edition
$0.06 / slot hour
Enterprise Plus edition
$0.10 / slot hour
Offerings
Pricing Offerings
FirebaseGoogle BigQuery
Free Trial
NoYes
Free/Freemium Version
NoYes
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
FirebaseGoogle BigQuery
Considered Both Products
Firebase
Chose Firebase
Unlike other tools in the GCP suite that have an equivalent in other clouds such as Bigquery (Athenas on AWS), AI Platform (Sagemaker), Storage (S3), we do not find an equivalent as complete as Firebase in any other provider. This is the main reason why we chose this provider …
Google BigQuery
Chose Google BigQuery
Firebase is not a competitor, necessarily, of BigQuery, but its integration with it allows for a greater deep dive into our Firebase data. The only reason we needed to start using BigQuery was that Firebase didn't give us the locational data that we need. Because of the easy …
Chose Google BigQuery
Google's Firebase isn't a competitor but we had to use Google's BigQuery because Google's Firebase's database is limited compared to Google's BigQuery. Linking your Firebase project to BigQuery lets you access your raw, unsampled event data along with all of your parameters and …
Chose Google BigQuery
I was already familiar with the Google Cloud Platform environment, and I was better equipped with the standard SQL language. Some of the syntax does not translate well to Redshift. It also seemed like many data source integrations relevant to our business were easier and more …
Features
FirebaseGoogle BigQuery
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
Firebase
-
Ratings
Google BigQuery
8.4
73 Ratings
3% below category average
Automatic software patching00 Ratings8.017 Ratings
Database scalability00 Ratings9.172 Ratings
Automated backups00 Ratings8.524 Ratings
Database security provisions00 Ratings8.866 Ratings
Monitoring and metrics00 Ratings8.268 Ratings
Automatic host deployment00 Ratings8.013 Ratings
Best Alternatives
FirebaseGoogle BigQuery
Small Businesses
Visual Studio
Visual Studio
Score 8.8 out of 10
IBM Cloudant
IBM Cloudant
Score 7.5 out of 10
Medium-sized Companies
Visual Studio
Visual Studio
Score 8.8 out of 10
IBM Cloudant
IBM Cloudant
Score 7.5 out of 10
Enterprises
Visual Studio
Visual Studio
Score 8.8 out of 10
IBM Cloudant
IBM Cloudant
Score 7.5 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
FirebaseGoogle BigQuery
Likelihood to Recommend
4.5
(29 ratings)
8.8
(73 ratings)
Likelihood to Renew
-
(0 ratings)
7.9
(3 ratings)
Usability
4.5
(4 ratings)
7.7
(5 ratings)
Support Rating
7.3
(6 ratings)
7.4
(10 ratings)
Contract Terms and Pricing Model
-
(0 ratings)
10.0
(1 ratings)
Professional Services
-
(0 ratings)
8.2
(2 ratings)
User Testimonials
FirebaseGoogle BigQuery
Likelihood to Recommend
Google
Firebase should be your first choice if your platform is mobile first. Firebase's mobile platform support for client-side applications is second to none, and I cannot think of a comparable cross-platform toolkit. Firebase also integrates well with your server-side solution, meaning that you can plug Firebase into your existing app architecture with minimal effort.
Firebase lags behind on the desktop, however. Although macOS support is rapidly catching up, full Windows support is a glaring omission for most Firebase features. This means that if your platform targets Windows, you will need to implement the client functionality manually using Firebase's web APIs and wrappers, or look for another solution.
Read full review
Google
Google BigQuery is great for being the central datastore and entry point of data if you're on GCP. It seamlessly integrates with other Google products, meaning you can ingest data from other Google products with ease and little technical knowledge, and all of it is near real-time. Being serverless, BigQuery will scale with you, which means you don't have to worry about contention or spikes in demand/storage. This can, however, mean your costs can run away quickly or mount up at short notice.
Read full review
Pros
Google
  • Analytics wise, retention is extremely important to our app, therefore we take advantage of the cohort analysis to see the impact of our middle funnel (retargeting, push, email) efforts affect the percent of users that come back into the app. Firebase allows us to easily segment these this data and look at a running average based on certain dates.
  • When it comes to any mobile app, a deep linking strategy is essential to any apps success. With Firebase's Dynamic Links, we are able to share dynamic links (recognize user device) that are able to redirect to in-app content. These deep links allow users to share other deep-linked content with friends, that also have link preview assets.
  • Firebase allows users to effectively track events, funnels, and MAUs. With this simple event tracking feature, users can put organize these events into funnels of their main user flows (e.g., checkout flows, onboarding flows, etc.), and subsequently be able to understand where the drop-off is in the funnel and then prioritize areas of the funnel to fix. Also, MAU is important to be able to tell if you are bringing in new users and what's the active volume for each platform (Android, iOS).
Read full review
Google
  • First and foremost - Google BigQuery is great at quickly analyzing large amounts of data, which helps us understand things like customer behavior or product performance without waiting for a long time.
  • It is very easy to use. Anyone in our team can easily ask questions about our data using simple language, like asking ChatGPT a question. This means everyone can find important information from our data without needing to be a data expert.
  • It plays nicely with other tools we use, so we can seamlessly connect it with things like Google Cloud Storage for storing data or Data Studio for creating visual reports. This makes our work smoother and helps us collaborate better across different tasks.
Read full review
Cons
Google
  • Attribution and specifically multi-touch attribution could be more robust such as Branch or Appsflyer but understand this isn't Firebases bread and butter.
  • More parameters. Firebase allows you to track tons of events (believe it's up to 50 or so) but the parameters of the events it only allows you to track 5 which is so messily and unbelievable. So you're able to get good high-level data but if you want to get granular with the events and actions are taken on your app to get real data insight you either have to go with a paid data analytics platform or bring on someone that's an expert in SQL to go through Big Query.
  • City-specific data instead of just country-specific data would have been a huge plus as well.
Read full review
Google
  • It is challenging to predict costs due to BigQuery's pay-per-query pricing model. User-friendly cost estimation tools, along with improved budget alerting features, could help users better manage and predict expenses.
  • The BigQuery interface is less intuitive. A more user-friendly interface, enhanced documentation, and built-in tutorial systems could make BigQuery more accessible to a broader audience.
Read full review
Likelihood to Renew
Google
No answers on this topic
Google
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review
Usability
Google
Firebase functions are more difficult to use, there are no concepts of triggers or cascading deletes without the use of Firebase functions. Firebase functions can run forever if not written correctly and cause billing nightmares. While this hasn't happened to us specifically it is a thing that happens more than one realizes.
Read full review
Google
web UI is easy and convenient. Many RDBMS clients such as aqua data studio, Dbeaver data grid, and others connect. Range of well-documented APIs available. The range of features keeps expanding, increasing similar features to traditional RDBMS such as Oracle and DB2
Read full review
Support Rating
Google
Our analytics folks handled the majority of the communication when it came to customer service, but as far as I was aware, the support we got was pretty good. When we had an issue, we were able to reach out and get support in a timely fashion. Firebase was easy to reach and reasonably available to assist when needed.
Read full review
Google
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review
Alternatives Considered
Google
Before using Firebase, we exclusively used self hosted database services. Using Firebase has allowed us to reduce reliance on single points of failure and systems that are difficult to scale. Additionally, Firebase is much easier to set up and use than any sort of self hosted database. This simplicity has allowed us to try features that we might not have based on the amount of work they required in the past.
Read full review
Google
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review
Contract Terms and Pricing Model
Google
No answers on this topic
Google
None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review
Professional Services
Google
No answers on this topic
Google
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review
Return on Investment
Google
  • Makes building real-time interfaces easy to do at scale with no backend involvement.
  • Very low pricing for small companies and green-fields projects.
  • Lack of support for more complicated queries needs to be managed by users and often forces strange architecture choices for data to enable it to be easily accessed.
Read full review
Google
  • Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
  • We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
  • Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Read full review
ScreenShots

Google BigQuery Screenshots

Screenshot of Migrating data warehouses to BigQuery - Features a streamlined migration path from Netezza, Oracle, Redshift, Teradata, or Snowflake to BigQuery using the fully managed BigQuery Migration Service.Screenshot of bringing any data into BigQuery - Data files can be uploaded from local sources, Google Drive, or Cloud Storage buckets, using BigQuery Data Transfer Service (DTS), Cloud Data Fusion plugins, by replicating data from relational databases with Datastream for BigQuery, or by leveraging Google's data integration partnerships.Screenshot of generative AI use cases with BigQuery and Gemini models - Data pipelines that blend structured data, unstructured data and generative AI models together can be built to create a new class of analytical applications. BigQuery integrates with Gemini 1.0 Pro using Vertex AI. The Gemini 1.0 Pro model is designed for higher input/output scale and better result quality across a wide range of tasks like text summarization and sentiment analysis. It can be accessed using simple SQL statements or BigQuery’s embedded DataFrame API from right inside the BigQuery console.Screenshot of insights derived from images, documents, and audio files, combined with structured data - Unstructured data represents a large portion of untapped enterprise data. However, it can be challenging to interpret, making it difficult to extract meaningful insights from it. Leveraging the power of BigLake, users can derive insights from images, documents, and audio files using a broad range of AI models including Vertex AI’s vision, document processing, and speech-to-text APIs, open-source TensorFlow Hub models, or custom models.Screenshot of event-driven analysis - Built-in streaming capabilities automatically ingest streaming data and make it immediately available to query. This allows users to make business decisions based on the freshest data. Or Dataflow can be used to enable simplified streaming data pipelines.Screenshot of predicting business outcomes AI/ML - Predictive analytics can be used to streamline operations, boost revenue, and mitigate risk. BigQuery ML democratizes the use of ML by empowering data analysts to build and run models using existing business intelligence tools and spreadsheets.