Google BigQuery vs. Informatica MDM & 360 Applications

Overview
ProductRatingMost Used ByProduct SummaryStarting Price
Google BigQuery
Score 8.7 out of 10
N/A
Google's BigQuery is part of the Google Cloud Platform, a database-as-a-service (DBaaS) supporting the querying and rapid analysis of enterprise data.
$6.25
per TiB (after the 1st 1 TiB per month, which is free)
Informatica MDM & 360 Applications
Score 3.0 out of 10
N/A
Informatica MDM is an enterprise master data management solution that competes directly with IBM's InfoSphere and Oracle's Siebel UCM product.Informatica MDM and the company's 360 applications present a multidomain solution with flexibility to support any master data domain and relationship—whether on-premises, in the cloud, or both.N/A
Pricing
Google BigQueryInformatica MDM & 360 Applications
Editions & Modules
Standard edition
$0.04 / slot hour
Enterprise edition
$0.06 / slot hour
Enterprise Plus edition
$0.10 / slot hour
No answers on this topic
Offerings
Pricing Offerings
Google BigQueryInformatica MDM & 360 Applications
Free Trial
YesNo
Free/Freemium Version
YesNo
Premium Consulting/Integration Services
NoNo
Entry-level Setup FeeNo setup feeNo setup fee
Additional Details
More Pricing Information
Community Pulse
Google BigQueryInformatica MDM & 360 Applications
Features
Google BigQueryInformatica MDM & 360 Applications
Database-as-a-Service
Comparison of Database-as-a-Service features of Product A and Product B
Google BigQuery
8.4
79 Ratings
2% below category average
Informatica MDM & 360 Applications
-
Ratings
Automatic software patching8.017 Ratings00 Ratings
Database scalability9.078 Ratings00 Ratings
Automated backups8.524 Ratings00 Ratings
Database security provisions8.772 Ratings00 Ratings
Monitoring and metrics8.274 Ratings00 Ratings
Automatic host deployment8.013 Ratings00 Ratings
Best Alternatives
Google BigQueryInformatica MDM & 360 Applications
Small Businesses
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10

No answers on this topic

Medium-sized Companies
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Informatica Customer 360 for Salesforce
Informatica Customer 360 for Salesforce
Score 7.7 out of 10
Enterprises
IBM Cloudant
IBM Cloudant
Score 7.4 out of 10
Winshuttle
Winshuttle
Score 8.8 out of 10
All AlternativesView all alternativesView all alternatives
User Ratings
Google BigQueryInformatica MDM & 360 Applications
Likelihood to Recommend
8.9
(71 ratings)
9.0
(20 ratings)
Likelihood to Renew
8.0
(3 ratings)
9.0
(1 ratings)
Usability
7.7
(5 ratings)
9.0
(1 ratings)
Support Rating
7.3
(10 ratings)
9.0
(2 ratings)
Implementation Rating
-
(0 ratings)
8.0
(1 ratings)
Contract Terms and Pricing Model
10.0
(1 ratings)
-
(0 ratings)
Professional Services
8.2
(2 ratings)
-
(0 ratings)
User Testimonials
Google BigQueryInformatica MDM & 360 Applications
Likelihood to Recommend
Google
Event-based data can be captured seamlessly from our data layers (and exported to Google BigQuery). When events like page-views, clicks, add-to-cart are tracked, Google BigQuery can help efficiently with running queries to observe patterns in user behaviour. That intermediate step of trying to "untangle" event data is resolved by Google BigQuery. A scenario where it could possibly be less appropriate is when analysing "granular" details (like small changes to a database happening very frequently).
Read full review
Informatica
It is a robust software with great management and data model. It can be difficult to learn how to use and deploy the first time but the mapping and features work very well and have optimized our productivity and cost savings. We can customize reports, create rules and integrate with other applications. Overall I recommend it.
Read full review
Pros
Google
  • Realtime integration with Google Sheets.
  • GSheet data can be linked to a BigQuery table and the data in that sheet is ingested in realtime into BigQuery. It's a live 'sync' which means it supports insertions, deletions, and alterations. The only limitation here is the schema'; this remains static once the table is created.
  • Seamless integration with other GCP products.
  • A simple pipeline might look like this:-
  • GForms -> GSheets -> BigQuery -> Looker
  • It all links up really well and with ease.
  • One instance holds many projects.
  • Separating data into datamarts or datameshes is really easy in BigQuery, since one BigQuery instance can hold multiple projects; which are isolated collections of datasets.
Read full review
Informatica
  • This program raises us to a professional level where we have better versatility to control all the media of my work and have a correct response for each scenario.
  • It is essential to be right about the destination and development of my data, Informatica MDM is here to simplify all these processes for its users.
Read full review
Cons
Google
  • Please expand the availability of documentation, tutorials, and community forums to provide developers with comprehensive support and guidance on using Google BigQuery effectively for their projects.
  • If possible, simplify the pricing model and provide clearer cost breakdowns to help users understand and plan for expenses when using Google BigQuery. Also, some cost reduction is welcome.
  • It still misses the process of importing data into Google BigQuery. Probably, by improving compatibility with different data formats and sources and reducing the complexity of data ingestion workflows, it can be made to work.
Read full review
Informatica
  • It is unfortunate how this program has a couple of limitations in terms of insertions; it does not have the ability to agglomerate and archive the data in real-time by groups.
  • To have automation functions, the program is very limited in performing one task at a time, compared to other systems that perform functions simultaneously.
Read full review
Likelihood to Renew
Google
We have to use this product as its a 3rd party supplier choice to utilise this product for their data side backend so will not be likely we will move away from this product in the future unless the 3rd party supplier decides to change data vendors.
Read full review
Informatica
Supporting well in managing our huge customer base and managing the customer hierarchies well aligned with transactional processes
Read full review
Usability
Google
I think overall it is easy to use. I haven't done anything from the development side but an more of an end user of reporting tables built in Google BigQuery. I connect data visualization tools like Tableau or Power BI to the BigQuery reporting tables to analyze trends and create complex dashboards.
Read full review
Informatica
Strong Customer MDM capabilities for de-duplication, merging, golden record, exposing customer master data. Strong Integration capabilities
Read full review
Reliability and Availability
Google
I have never had any significant issues with Google Big Query. It always seems to be up and running properly when I need it. I cannot recall any times where I received any kind of application errors or unplanned outages. If there were any they were resolved quickly by my IT team so I didn't notice them.
Read full review
Informatica
No answers on this topic
Performance
Google
I think Google Big Query's performance is in the acceptable range. Sometimes larger datasets are somewhat sluggish to load but for most of our applications it performs at a reasonable speed. We do have some reports that include a lot of complex calculations and others that run on granular store level data that so sometimes take a bit longer to load which can be frustrating.
Read full review
Informatica
No answers on this topic
Support Rating
Google
BigQuery can be difficult to support because it is so solid as a product. Many of the issues you will see are related to your own data sets, however you may see issues importing data and managing jobs. If this occurs, it can be a challenge to get to speak to the correct person who can help you.
Read full review
Informatica
I'm not sure since I never used support. My colleagues never had any issues with it, therefore my rating would be an 8 with a certain range of uncertainty.
Read full review
Implementation Rating
Google
No answers on this topic
Informatica
The integrator did a fair job and even though Business Change Management was complex, it was well concluded on time
Read full review
Alternatives Considered
Google
PowerBI can connect to GA4 for example but the data processing is more complicated and it takes longer to create dashboards. Azure is great once the data import has been configured but it's not an easy task for small businesses as it is with BigQuery.
Read full review
Informatica
Informatica MDM has proven it's worth in the organization by driving the revenue growth. It saves our lot of time by filtering out duplicate values and helps in solving critical business problems. It is very helpful when we deal with a lot of data. Apart from this we can populate data on various third party integration which is most useful case
Read full review
Contract Terms and Pricing Model
Google
None so far. Very satisfied with the transparency on contract terms and pricing model.
Read full review
Informatica
No answers on this topic
Scalability
Google
We have continued to expand out use of Google Big Query over the years. I'd say its flexibility and scalability is actually quite good. It also integrates well with other tools like Tableau and Power BI. It has served the needs of multiple data sources across multiple departments within my company.
Read full review
Informatica
No answers on this topic
Professional Services
Google
Google Support has kindly provide individual support and consultants to assist with the integration work. In the circumstance where the consultants are not present to support with the work, Google Support Helpline will always be available to answer to the queries without having to wait for more than 3 days.
Read full review
Informatica
No answers on this topic
Return on Investment
Google
  • Previously, running complex queries on our on-premise data warehouse could take hours. Google BigQuery processes the same queries in minutes. We estimate it saves our team at least 25% of their time.
  • We can target our marketing campaigns very easily and understand our customer behaviour. It lets us personalize marketing campaigns and product recommendations and experience at least a 20% improvement in overall campaign performance.
  • Now, we only pay for the resources we use. Saved $1 million annually on data infrastructure and data storage costs compared to our previous solution.
Read full review
Informatica
  • I cannot speak to this for 2 reasons. 1. I am not privy to the financials associated with this implementation or the previous one. 2. We have not hit our 'go-live' for this implementation yet to compare it's performance to our previous solution.
Read full review
ScreenShots

Google BigQuery Screenshots

Screenshot of Migrating data warehouses to BigQuery - Features a streamlined migration path from Netezza, Oracle, Redshift, Teradata, or Snowflake to BigQuery using the fully managed BigQuery Migration Service.Screenshot of bringing any data into BigQuery - Data files can be uploaded from local sources, Google Drive, or Cloud Storage buckets, using BigQuery Data Transfer Service (DTS), Cloud Data Fusion plugins, by replicating data from relational databases with Datastream for BigQuery, or by leveraging Google's data integration partnerships.Screenshot of generative AI use cases with BigQuery and Gemini models - Data pipelines that blend structured data, unstructured data and generative AI models together can be built to create a new class of analytical applications. BigQuery integrates with Gemini 1.0 Pro using Vertex AI. The Gemini 1.0 Pro model is designed for higher input/output scale and better result quality across a wide range of tasks like text summarization and sentiment analysis. It can be accessed using simple SQL statements or BigQuery’s embedded DataFrame API from right inside the BigQuery console.Screenshot of insights derived from images, documents, and audio files, combined with structured data - Unstructured data represents a large portion of untapped enterprise data. However, it can be challenging to interpret, making it difficult to extract meaningful insights from it. Leveraging the power of BigLake, users can derive insights from images, documents, and audio files using a broad range of AI models including Vertex AI’s vision, document processing, and speech-to-text APIs, open-source TensorFlow Hub models, or custom models.Screenshot of event-driven analysis - Built-in streaming capabilities automatically ingest streaming data and make it immediately available to query. This allows users to make business decisions based on the freshest data. Or Dataflow can be used to enable simplified streaming data pipelines.Screenshot of predicting business outcomes AI/ML - Predictive analytics can be used to streamline operations, boost revenue, and mitigate risk. BigQuery ML democratizes the use of ML by empowering data analysts to build and run models using existing business intelligence tools and spreadsheets.